x
Volume 45 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
HU Ke, LIU Bing. Advances in data processing and application of imaging transcriptomics[J]. Journal of Molecular Imaging, 2022, 45(5): 767-773. doi: 10.12122/j.issn.1674-4500.2022.05.27
Citation: HU Ke, LIU Bing. Advances in data processing and application of imaging transcriptomics[J]. Journal of Molecular Imaging, 2022, 45(5): 767-773. doi: 10.12122/j.issn.1674-4500.2022.05.27

Advances in data processing and application of imaging transcriptomics

doi: 10.12122/j.issn.1674-4500.2022.05.27
Funds:

National Natural Science Foundation of China 81771451

  • Received Date: 2022-07-07
  • Publish Date: 2022-09-20
  • With the advent of brain-wide transcriptomics data, i.e. brain-wide gene expression atlases such as the Allen human brain atlas, imaging transcriptomics has opened new opportunities for understanding the relationship between spatial variations on molecular scale of the brain and macroscopic neuroimaging phenotypes. A growing body of literature is demonstrating relationships between gene expression and different properties of brain structure and function. This article introduces the gene expression dataset widely used in the field of imaging transcriptomics, as well as the basic steps and the commonly used toolbox for transcriptomics data processing, and outlines the basic workflow and three kinds of analysis methods for associating gene expression data with image data. In recent years, imaging transcriptomics has been widely used to understand brain neurodevelopment and various neuropsychiatric disorders. However, the field is still nascent, and several methodological challenges must be overcome to ensure the robustness of the findings. As the filed develops and existing methodologies are refined, future studies can be combined with increasingly more comprehensive and precise transcriptional atlas data, which will offer a powerful and reliable framework for identifying the molecular correlates of disease-related brain changes observed in vivo.

     

  • loading
  • [1]
    Brammer M. The role of neuroimaging in diagnosis and personalized medicine: current position and likely future directions[J]. Dialogues Clin Neurosci, 2009, 11(4): 389-96. doi: 10.31887/DCNS.2009.11.4/mbrammer
    [2]
    Opel N, Goltermann J, Hermesdorf M, et al. Cross-disorder analysis of brain structural abnormalities in six major psychiatric disorders: a secondary analysis of mega- and Meta- analytical findings from the ENIGMA consortium[J]. Biol Psychiatry, 2020, 88(9): 678-86. doi: 10.1016/j.biopsych.2020.04.027
    [3]
    Patel Y, Parker N, Shin J, et al. Virtual histology of cortical thickness reveals shared neurobiology across six psychiatric disorders[J]. Biol Psychiatry, 2020, 87(9): S239-40.
    [4]
    Cassidy PJ, Radda GK. Molecular imaging perspectives[J]. J R Soc Interface, 2005, 2(3): 133-44. doi: 10.1098/rsif.2005.0040
    [5]
    Arnatkevičiūtė A, Fulcher BD, Fornito A. A practical Guide to linking brain-wide gene expression and neuroimaging data[J]. NeuroImage, 2019, 189: 353-67. doi: 10.1016/j.neuroimage.2019.01.011
    [6]
    Fornito A, Arnatkevičiūtė A, Fulcher BD. Bridging the gap between connectome and transcriptome[J]. Trends Cogn Sci, 2019, 23(1): 34- 50. doi: 10.1016/j.tics.2018.10.005
    [7]
    Arnatkeviciute A, Fulcher BD, Bellgrove MA, et al. Where the genome meets the connectome: understanding how genes shape human brain connectivity[J]. NeuroImage, 2021, 244: 118570. doi: 10.1016/j.neuroimage.2021.118570
    [8]
    Bigos KL, Weinberger DR. Imaging genetics-days of future past[J]. NeuroImage, 2010, 53(3): 804-9. doi: 10.1016/j.neuroimage.2010.01.035
    [9]
    Baaré WFC, Hulshoff Pol HE, Boomsma DI, et al. Quantitative genetic modeling of variation in human brain morphology[J]. Cereb Cortex, 2001, 11(9): 816-24. doi: 10.1093/cercor/11.9.816
    [10]
    Thompson PM, Ge T, Glahn DC, et al. Genetics of the connectome [J]. NeuroImage, 2013, 80: 475-88. doi: 10.1016/j.neuroimage.2013.05.013
    [11]
    Arnatkeviciute A, Fulcher BD, Oldham S, et al. Genetic influences on hub connectivity of the human connectome[J]. Nat Commun, 2021, 12: 4237. doi: 10.1038/s41467-021-24306-2
    [12]
    Elliott LT, Sharp K, Alfaro-Almagro F, et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank[J]. Nature, 2018, 562(7726): 210-6. doi: 10.1038/s41586-018-0571-7
    [13]
    Smith SM, Douaud G, Chen W, et al. An expanded set of genomewide association studies of brain imaging phenotypes in UK Biobank [J]. Nat Neurosci, 2021, 24(5): 737-45. doi: 10.1038/s41593-021-00826-4
    [14]
    Choi JK, Kim SC. Environmental effects on gene expression phenotype have regional biases in the human genome[J]. Genetics, 2007, 175(4): 1607-13. doi: 10.1534/genetics.106.069047
    [15]
    Cole SW. Social regulation of human gene expression[J]. Curr Dir Psychol Sci, 2009, 18(3): 132-7. doi: 10.1111/j.1467-8721.2009.01623.x
    [16]
    Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, et al. An anatomically comprehensive atlas of the adult human brain transcriptome[J]. Nature, 2012, 489(7416): 391-9. doi: 10.1038/nature11405
    [17]
    Hawrylycz M, Miller JA, Menon V, et al. Canonical genetic signatures of the adult human brain[J]. Nat Neurosci, 2015, 18(12): 1832-44. doi: 10.1038/nn.4171
    [18]
    Shen EH, Overly CC, Jones AR. The Allen Human Brain Atlas: comprehensive gene expression mapping of the human brain[J]. Trends Neurosci, 2012, 35(12): 711-4. doi: 10.1016/j.tins.2012.09.005
    [19]
    French L, Paus T. A FreeSurfer view of the cortical transcriptome generated from the Allen Human Brain Atlas[J]. Front Neurosci, 2015, 9: 323.
    [20]
    Gorgolewski KJ, Varoquaux G, Rivera G, et al. NeuroVault. org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain[J]. Front Neuroinform, 2015, 9: 8.
    [21]
    Rizzo G, Veronese M, Expert P, et al. MENGA: a new comprehensive tool for the integration of neuroimaging data and the Allen human brain transcriptome atlas[J]. PLoS One, 2016, 11(2): e0148744. doi: 10.1371/journal.pone.0148744
    [22]
    Bhagwat N, Barry A, Dickie EW, et al. Understanding the impact of preprocessing pipelines on neuroimaging cortical surface analyses [J]. Gigascience, 2021, 10(1): 155. doi: 10.1093/gigascience/giaa155
    [23]
    Oldham S, Iūtė AA, Smith RE, et al. The efficacy of different preprocessing steps in reducing motion-related confounds in diffusion MRI connectomics[J]. NeuroImage, 2020, 222: 117252. doi: 10.1016/j.neuroimage.2020.117252
    [24]
    Carp J. On the plurality of (methodological) worlds: estimating the analytic flexibility of FMRI experiments[J]. Front Neurosci, 2012, 10(6): 149.
    [25]
    Parkes L, Fulcher B, Yücel M, et al. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for restingstate functional MRI[J]. NeuroImage, 2018, 171: 415-36. doi: 10.1016/j.neuroimage.2017.12.073
    [26]
    Markello RD, Arnatkeviciute A, Poline JB, et al. Standardizing workflows in imaging transcriptomics with the abagen toolbox[J]. eLife, 2021, 10: e72129. doi: 10.7554/eLife.72129
    [27]
    Arloth J, Bader DM, Röh S, et al. re- annotator: annotation pipeline for microarray probe sequences[J]. PLoS One, 2015, 10(10): e0139516. doi: 10.1371/journal.pone.0139516
    [28]
    Rizzo G, Veronese M, Heckemann RA, et al. The predictive power of brain mRNA mappings for in vivo protein density: a positron emission tomography correlation study[J]. J Cereb Blood Flow Metab, 2014, 34(5): 827-35. doi: 10.1038/jcbfm.2014.21
    [29]
    Veronese M, Bodini B, García-Lorenzo D, et al. Quantification of[11C]PIB PET for imaging myelin in the human brain: a test-retest reproducibility study in high-resolution research tomography[J]. J Cereb Blood Flow Metab, 2015, 35(11): 1771-82. doi: 10.1038/jcbfm.2015.120
    [30]
    Beliveau V, Ganz M, Feng L, et al. A high-resolution in vivo atlas of the human brain's serotonin system[J]. J Neurosci, 2017, 37(1): 120-8. doi: 10.1523/JNEUROSCI.2830-16.2016
    [31]
    Komorowski A, James GM, Philippe C, et al. Association of protein distribution and gene expression revealed by PET and post-mortem quantification in the serotonergic system of the human brain[J]. Cereb Cortex, 2016, 27(1): 117-30.
    [32]
    Gryglewski G, Seiger R, James GM, et al. Spatial analysis and high resolution mapping of the human whole-brain transcriptome for integrative analysis in neuroimaging[J]. NeuroImage, 2018, 176: 259-67. doi: 10.1016/j.neuroimage.2018.04.068
    [33]
    Ritchie J, Pantazatos SP, French L. Transcriptomic characterization of MRI contrast with focus on the T1-w/T2-w ratio in the cerebral cortex[J]. NeuroImage, 2018, 174: 504-17. doi: 10.1016/j.neuroimage.2018.03.027
    [34]
    Shin J, French L, Xu T, et al. Cell-specific gene-expression profiles and cortical thickness in the human brain[J]. Cereb Cortex, 2017, 28 (9): 3267-77.
    [35]
    Liu F, Tian HJ, Li J, et al. Altered voxel-wise gray matter structural brain networks in schizophrenia: association with brain genetic expression pattern[J]. Brain Imaging Behav, 2019, 13(2): 493-502. doi: 10.1007/s11682-018-9880-6
    [36]
    Patania A, Selvaggi P, Veronese M, et al. Topological gene expression networks recapitulate brain anatomy and function[J]. Netw Neurosci, 2019, 3(3): 744-62. doi: 10.1162/netn_a_00094
    [37]
    Komorowski A, Weidenauer A, Murgaš M, et al. Association of dopamine D2/3 receptor binding potential measured using PET and [11C]-(+)-PHNO with post-mortem DRD2/3 gene expression in the human brain[J]. NeuroImage, 2020, 223: 117270. doi: 10.1016/j.neuroimage.2020.117270
    [38]
    Patel Y, Shin J, Drakesmith M, et al. Virtual histology of multi-modal magnetic resonance imaging of cerebral cortex in young men[J]. NeuroImage, 2020, 218: 116968. doi: 10.1016/j.neuroimage.2020.116968
    [39]
    Nørgaard M, Beliveau V, Ganz M, et al. A high-resolution in vivo atlas of the human brain's benzodiazepine binding site of GABAA receptors[J]. NeuroImage, 2021, 232: 117878. doi: 10.1016/j.neuroimage.2021.117878
    [40]
    Richiardi J, Altmann A, Milazzo AC, et al. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks[J]. Science, 2015, 348(6240): 1241-4. doi: 10.1126/science.1255905
    [41]
    Fulcher BD, Fornito A. A transcriptional signature of hub connectivity in the mouse connectome[J]. Proc Natl Acad Sci USA, 2016, 113(5): 1435-40. doi: 10.1073/pnas.1513302113
    [42]
    Arnatkevičiūtė A, Fulcher BD, Pocock R, et al. Hub connectivity, neuronal diversity, and gene expression in the Caenorhabditis elegans connectome[J]. PLoS Comput Biol, 2018, 14(2): e1005989. doi: 10.1371/journal.pcbi.1005989
    [43]
    Oldham MC, Konopka G, Iwamoto K, et al. Functional organization of the transcriptome in human brain[J]. Nat Neurosci, 2008, 11(11): 1271-82. doi: 10.1038/nn.2207
    [44]
    Forest M, Iturria-Medina Y, Goldman JS, et al. Gene networks show associations with seed region connectivity[J]. Hum Brain Mapp, 2017, 38(6): 3126-40. doi: 10.1002/hbm.23579
    [45]
    Burt JB, Demirtaş M, Eckner WJ, et al. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography[J]. Nat Neurosci, 2018, 21(9): 1251-9. doi: 10.1038/s41593-018-0195-0
    [46]
    Lau HYG, Fornito A, Fulcher BD. Scaling of gene transcriptional gradients with brain size across mouse development[J]. NeuroImage, 2021, 224: 117395. doi: 10.1016/j.neuroimage.2020.117395
    [47]
    Markello RD, Misic B. Comparing spatial null models for brain maps [J]. NeuroImage, 2021, 236: 118052. doi: 10.1016/j.neuroimage.2021.118052
    [48]
    Burt JB, Helmer M, Shinn M, et al[J]. NeuroImage, 2020, 220: 117038.
    [49]
    Alexander-Bloch AF, Shou HC, Liu SY, et al. On testing for spatial correspondence between maps of human brain structure and function [J]. NeuroImage, 2018, 178: 540-51. doi: 10.1016/j.neuroimage.2018.05.070
    [50]
    Kirsch L, Chechik G. On expression patterns and developmental origin of human brain regions[J]. PLoS Comput Biol, 2016, 12(8): e1005064. doi: 10.1371/journal.pcbi.1005064
    [51]
    Whitaker KJ, Vértes PE, Romero-Garcia R, et al. Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome[J]. Proc Natl Acad Sci USA, 2016, 113 (32): 9105-10. doi: 10.1073/pnas.1601745113
    [52]
    Romero-Garcia R, Whitaker KJ, Váša F, et al. Structural covariance networks are coupled to expression of genes enriched in supragranular layers of the human cortex[J]. NeuroImage, 2018, 171: 256-67. doi: 10.1016/j.neuroimage.2017.12.060
    [53]
    Seidlitz J, VVVa F, Shinn M, et al. Morphometric similarity networks detect microscale cortical organisation and predict inter- individual cognitive variation[J]. SSRN Journal, 2018, 97(1): 231-47.
    [54]
    Arnatkeviciute A, Fulcher BD, Oldham S, et al. Genetic influences on hub connectivity of the human connectome[J]. Nat Commun, 2021, 12(1): 1-14. doi: 10.1038/s41467-020-20314-w
    [55]
    Krienen FM, Yeo BTT, Ge T, et al. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain[J]. Proc Natl Acad Sci USA, 2016, 113(4): E469-78.
    [56]
    Vértes PE, Rittman T, Whitaker KJ, et al. Gene transcription profiles associated with inter-modular hubs and connection distance in human functional magnetic resonance imaging networks[J]. Philos Trans R Soc Lond B Biol Sci, 2016, 371(1705): 20150362. doi: 10.1098/rstb.2015.0362
    [57]
    Fox AS, Chang LJ, Gorgolewski KJ, et al. Bridging psychology and genetics using large-scale spatial analysis of neuroimaging and neurogenetic data[J]. bioRxiv, 2014, DOI: 10.1101/012310.
    [58]
    Hansen JY, Markello RD, Vogel JW, et al. Mapping gene transcription and neurocognition across human neocortex[J]. Nat Hum Behav, 2021, 5(9): 1240-50. doi: 10.1038/s41562-021-01082-z
    [59]
    Rittman T, Rubinov M, Vértes PE, et al. Regional expression of the MAPT gene is associated with loss of hubs in brain networks and cognitive impairment in Parkinson disease and progressive supranuclear palsy[J]. NeurobiolAging, 2016, 48(1): 153-60.
    [60]
    Romme IAC, de Reus MA, Ophoff RA, et al. Connectome disconnectivity and cortical gene expression in patients with schizophrenia[J]. Biol Psychiatry, 2017, 81(6): 495-502. doi: 10.1016/j.biopsych.2016.07.012
    [61]
    McColgan P, Gregory S, Seunarine KK, et al. Brain regions showing white matter loss in Huntington's disease are enriched for synaptic and metabolic genes[J]. Biol Psychiatry, 2018, 83(5): 456-65. doi: 10.1016/j.biopsych.2017.10.019
    [62]
    Henderson MX, Cornblath EJ, Darwich A, et al. Spread of α- synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis[J]. Nat Neurosci, 2019, 22(8): 1248-57. doi: 10.1038/s41593-019-0457-5
    [63]
    Morgan SE, Seidlitz J, Whitaker KJ, et al. Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes[J]. Proc Natl Acad Sci USA, 2019, 116(19): 9604-9. doi: 10.1073/pnas.1820754116
    [64]
    Zheng YQ, Zhang Y, Yau Y, et al. Local vulnerability and global connectivity jointly shape neurodegenerative disease propagation [J]. PLoS Biol, 2019, 17(11): e3000495. doi: 10.1371/journal.pbio.3000495
    [65]
    Anderson KM, Collins MA, Chin R, et al. Transcriptional and imaging-genetic association of cortical interneurons, brain function, and schizophrenia risk[J]. Nat Commun, 2020, 11: 2889. doi: 10.1038/s41467-020-16710-x
    [66]
    Vogel JW, Iturria-Medina Y, Strandberg OT, et al. Spread of pathological tau proteins through communicating neurons in human Alzheimer's disease[J]. Nat Commun, 2020, 11: 2612. doi: 10.1038/s41467-020-15701-2
    [67]
    Shafiei G, Bazinet V, Dadar M, et al. Network structure and transcriptomic vulnerability shape atrophy in frontotemporal dementia[J]. Brain, 2022: 69.
    [68]
    Gilmore JH, Knickmeyer RC, Gao W. Imaging structural and functional brain development in early childhood[J]. Nat Rev Neurosci, 2018, 19(3): 123-37. doi: 10.1038/nrn.2018.1
    [69]
    Amlien IK, Fjell AM, Tamnes CK, et al. Organizing principles of human cortical development-thickness and area from 4 to 30 years: insights from comparative primate neuroanatomy[J]. Cereb Cortex, 2014, 26(1): 257-67.
    [70]
    Patel Y, Shin J, Gowland PA, et al. Maturation of the human cerebral cortex during adolescence: myelin or dendritic Arbor?[J]. Cereb Cortex, 2018, 29(8): 3351-62.
    [71]
    Li J, Seidlitz J, Suckling J, et al. Cortical structural differences in major depressive disorder correlate with cell type-specific transcriptional signatures[J]. Nat Commun, 2021, 12: 1647. doi: 10.1038/s41467-021-21943-5
    [72]
    Romero-Garcia R, Warrier V, Bullmore ET, et al. Synaptic and transcriptionally downregulated genes are associated with cortical thickness differences in autism[J]. Mol Psychiatry, 2019, 24(7): 1053-64. doi: 10.1038/s41380-018-0023-7
    [73]
    Hess JL, Radonjić NV, Patak J, et al. Autophagy, apoptosis, and neurodevelopmental genes might underlie selective brain region vulnerability in attention-deficit/hyperactivity disorder[J]. Mol Psychiatry, 2021, 26(11): 6643-54. doi: 10.1038/s41380-020-00974-2
    [74]
    Seidlitz J, Váša F, Shinn M, et al. Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation[J]. Neuron, 2018, 97(1): 231-47. e7. doi: 10.1016/j.neuron.2017.11.039
    [75]
    Grothe MJ, Sepulcre J, Gonzalez-Escamilla G, et al. Molecular properties underlying regional vulnerability to Alzheimer's disease pathology[J]. Brain, 2018, 141(9): 2755-71.
    [76]
    Vidal-Pineiro D, Parker N, Shin J, et al. Cellular correlates of cortical thinning throughout the lifespan[J]. Sci Rep, 2020, 10: 21803. doi: 10.1038/s41598-020-78471-3
    [77]
    Wang DF, Liu S, Warrell J, et al. Comprehensive functional genomic resource and integrative model for the human brain[J]. Science, 2018, 362(6420): eaat8464. doi: 10.1126/science.aat8464
    [78]
    Eze UC, Bhaduri A, Haeussler M, et al. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia[J]. Nat Neurosci, 2021, 24 (4): 584-94. doi: 10.1038/s41593-020-00794-1
    [79]
    Bakken TE, van Velthoven CT, Menon V, et al. Single-cell and singlenucleus RNA-seq uncovers shared and distinct axes of variation in dorsal LGN neurons in mice, non-human Primates, and humans[J]. eLife, 2021, 10: e64875. doi: 10.7554/eLife.64875
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (494) PDF downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return