x
Volume 44 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Panpan LIN, Yanlong JIA, Huaidong HUANG, Kai HUANG, Renhua WU. Molecular imaging: frontier technology and application[J]. Journal of Molecular Imaging, 2021, 44(4): 710-713. doi: 10.12122/j.issn.1674-4500.2021.04.27
Citation: Panpan LIN, Yanlong JIA, Huaidong HUANG, Kai HUANG, Renhua WU. Molecular imaging: frontier technology and application[J]. Journal of Molecular Imaging, 2021, 44(4): 710-713. doi: 10.12122/j.issn.1674-4500.2021.04.27

Molecular imaging: frontier technology and application

doi: 10.12122/j.issn.1674-4500.2021.04.27
  • Received Date: 2021-06-29
  • Publish Date: 2021-07-20
  • With the progress of nanobiotechnology and the rise of optical imaging technology recently, molecular imaging has shown a development trend of close integration with many disciplines such as materials science, chemistry, medical physics, biomedical engineering and genomics, etc. New molecular imaging agents based on nanotechnology are developing rapidly, and nanoparticles modified with small molecules, peptides, antibodies and aptamers have been widely used in preclinical research and clinical translation. Multimodal molecular imaging technology has emerged as a key component of precision medicine, and a new wave of imaging technology upgrades can obtain more information at the tissue and molecular levels, further promoting cross-fertilization between disciplines. In this paper, we review the cutting-edge technologies and clinical applications of optical and photoacoustic molecular imaging, magnetic resonance molecular imaging, and positron emission tomography molecular imaging.

     

  • loading
  • [1]
    Liu YX, Zhu XJ, Wei Z, et al. Customized photothermal therapy of subcutaneous orthotopic cancer by multichannel luminescent nanocomposites[J]. Adv Mater, 2021: 2008615. doi: 10.1002/adma.202008615
    [2]
    Guo F, Capaldi DP, McCormack DG, et al. Ultra-short echo-time magnetic resonance imaging lung segmentation with under-Annotations and domain shift[J]. Med Image Anal, 2021, 72: 102107. doi: 10.1016/j.media.2021.102107
    [3]
    Sermesant M, Delingette H, Cochet H, et al. Applications of artificial intelligence in cardiovascular imaging[J]. Nat Rev Cardiol, 2021: 1-10. http://www.nature.com/articles/s41569-021-00527-2
    [4]
    Ahmed MA, Williams P. Diagnosis of vascular catastrophe using optical coherence tomography[J]. Eur Heart J, 2021. DOI:10.1093/ eurheartj/ehab194.
    [5]
    Sakai S, Sato A, Hoshi T, et al. In vivo evaluation of coronary arteritis by serial optical coherence tomography in large vessel vasculitis[J]. Eur Heart J, 2020. DOI: 10.1093/eurheartj/ehaa991.
    [6]
    Wu YL, Zeng F, Zhao YL, et al. Emerging contrast agents for multispectral optoacoustic imaging and their biomedical applications[J]. Chem Soc Rev, 2021, 32. DOI: 10.1039/d1cs00358e.
    [7]
    Yang G, Huang HB, Luo HB, et al. Fiber endface photoacoustic generator for quantitative photoacoustic tomography[J]. Opt Lett, 2021, 46(11): 2706-9. doi: 10.1364/OL.426033
    [8]
    Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 2012, 335(6075): 1458-62. doi: 10.1126/science.1216210
    [9]
    Chen J, Qi J, Chen C, et al. Tocilizumab-conjugated polymer nanoparticles for NIR-Ⅱ photoacoustic-imaging-guided therapy of rheumatoid arthritis[J]. Adv Mater, 2020, 32(37): e2003399. doi: 10.1002/adma.202003399
    [10]
    Karlas A, Pleitez MA, Aguirre J, et al. Optoacoustic imaging in endocrinology and metabolism[J]. Nat Rev Endocrinol, 2021, 17 (6): 323-35. doi: 10.1038/s41574-021-00482-5
    [11]
    Qi S, Zhang YC, Liu GY, et al. Plasmonic-doped melanin-mimic for CXCR4-targeted NIR-Ⅱ photoacoustic computed tomography-guided photothermal ablation of orthotopic hepatocellular carcinoma[J]. Acta Biomater, 2021 http://www.sciencedirect.com/science/article/pii/S1742706121003445
    [12]
    Tang YF, Li YY, Hu XM, et al. Nanoprobes: "dual lock-and-key"-controlled nanoprobes for ultrahigh specific fluorescence imaging in the second near-infrared window (adv. mater. 31/2018)[J]. Adv Mater, 2018, 30(31): 1870226. doi: 10.1002/adma.201870226
    [13]
    Zheng DY, Yu PW, Wei ZW, et al. RBC membrane camouflaged semiconducting polymer nanoparticles for near-infrared photoacoustic imaging and photothermal therapy[J]. Nano Micro Lett, 2020, 12 (1): 1-17. doi: 10.1007/s40820-019-0337-2
    [14]
    Gossé LK, Bell SW, Hosseini SMH. Functional near-infrared spectroscopy in developmental psychiatry: a review of attention deficit hyperactivity disorder[J]. Eur Arch Psychiatry Clin Neurosci, 2021: 1-18. doi: 10.1007/s00406-021-01288-2
    [15]
    Waksman R, Di Mario C, Torguson R, et al. Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging: a prospective, cohort study[J]. Lancet, 2019, 394(10209): 1629-37. doi: 10.1016/S0140-6736(19)31794-5
    [16]
    Schuurman AS, Vroegindewey M, Kardys I, et al. Near-infrared spectroscopy-derived lipid core burden index predicts adverse cardiovascular outcome in patients with coronary artery disease during long-term follow-up[J]. Eur Heart J, 2018, 39(4): 295-302. doi: 10.1093/eurheartj/ehx247
    [17]
    Wang XW, Zhong XY, Li JX, et al. Inorganic nanomaterials with rapid clearance for biomedical applications[J]. Chem Soc Rev, 2021. DOI: 10.1039/d0cs00461h.
    [18]
    Smits M. MRI biomarkers in neuro-oncology[J]. Nat Rev Neurol, 2021: 1-15. http://www.researchgate.net/publication/352551711_MRI_biomarkers_in_neuro-oncology
    [19]
    Liang ZY, Wang QY, Liao HW, et al. Artificially engineered antiferromagnetic nanoprobes for ultra-sensitive histopathological level magnetic resonance imaging[J]. Nat Commun, 2021, 12: 3840. doi: 10.1038/s41467-021-24055-2
    [20]
    Fang H, Li M, Liu Q, et al. Ultra-sensitive nanoprobe modified with tumor cell membrane for UCL/MRI/PET multimodality precise imaging of triple-negative breast cancer[J]. Nanomicro Lett, 2020, 12(1): 62.
    [21]
    Yi ZG, Luo ZC, Barth ND, et al. In vivo tumor visualization through MRI off-on switching of NaGdF 4 – CaCO 3 nanoconjugates[J]. Adv Mater, 2019, 31(37): 1901851. doi: 10.1002/adma.201901851
    [22]
    A R, Yao Y, Guo X, et al. Precise cancer anti-acid therapy monitoring using pH-sensitive MnO2@BSA nanoparticles by magnetic resonance imaging[J]. ACS Appl Mater Interfaces, 2021, 13(16): 18604-18. doi: 10.1021/acsami.1c04310
    [23]
    Yan G, Zhang T, Dai Z, et al. A potential magnetic resonance imaging technique based on chemical exchange saturation transfer for in vivo γ-aminobutyric acid imaging[J]. PLoS One, 2016, 11 (10): e0163765. doi: 10.1371/journal.pone.0163765
    [24]
    Mao YF, Zhuang ZR, Chen YZ, et al. Imaging of glutamate in acute traumatic brain injury using chemical exchange saturation transfer[J]. Quant Imaging Med Surg, 2019, 9(10): 1652-63. doi: 10.21037/qims.2019.09.08
    [25]
    Chen P, Shen Z, Wang Q, et al. Reduced cerebral glucose uptake in an Alzheimer's rat model with glucose-weighted chemical exchange saturation transfer imaging[J]. Front Aging Neurosci, 2021, 13: 618690. doi: 10.3389/fnagi.2021.618690
    [26]
    Zhang J, Yuan Y, Gao M, et al. Carbon dots as a new class of diamagnetic chemical exchange saturation transfer (diaCEST) MRI contrast agents[J]. Angew Chem Int Ed Engl, 2019, 58(29): 9871-5. doi: 10.1002/anie.201904722
    [27]
    Ali MM, Liu G, Shah T, et al. Using two chemical exchange saturation transfer magnetic resonance imaging contrast agents for molecular imaging studies[J]. Acc Chem Res, 2009, 42(7): 915-24. doi: 10.1021/ar8002738
    [28]
    Jia YL, Wang CC, Zheng JH, et al. Novel nanomedicine with a chemical-exchange saturation transfer effect for breast cancer treatment in vivo[J]. J Nanobiotechnology, 2019, 17(1): 1-14. doi: 10.1186/s12951-018-0433-3
    [29]
    Jia YL, Geng K, Cheng Y, et al. Nanomedicine particles associated with chemical exchange saturation transfer contrast agents in biomedical applications[J]. Front Chem, 2020, 8: 326. doi: 10.3389/fchem.2020.00326
    [30]
    Chen L, van Zijl PCM, Wei ZL, et al. Early detection of Alzheimer's disease using creatine chemical exchange saturation transfer magnetic resonance imaging[J]. NeuroImage, 2021, 236: 118071. doi: 10.1016/j.neuroimage.2021.118071
    [31]
    Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid Β[J]. Sci Transl Med, 2012, 4 (147): 147ra111. http://europepmc.org/articles/PMC3551275
    [32]
    Kiviniemi V, Wang X, Korhonen V, et al. Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?[J]. J Cereb Blood Flow Metab, 2016, 36(6): 1033-45. doi: 10.1177/0271678X15622047
    [33]
    Taoka T, Naganawa S. Neurofluid dynamics and the glymphatic system: a neuroimaging perspective[J]. Korean J Radiol, 2020, 21 (11): 1199-209. doi: 10.3348/kjr.2020.0042
    [34]
    Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders[J]. Lancet Neurol, 2018, 17(11): 1016-24. doi: 10.1016/S1474-4422(18)30318-1
    [35]
    Nauen DW, Troncoso JC. Amyloid-beta is present in human lymph nodes and greatly enriched in those of the cervical region[J]. Alzheimer's Dement, 2021. DOI: 10.1002/alz.12385.
    [36]
    Chen YF, Dai ZZ, Fan RH, et al. Glymphatic system visualized by chemical-exchange-saturation-transfer magnetic resonance imaging[J]. ACS Chem Neurosci, 2020, 11(13): 1978-84. doi: 10.1021/acschemneuro.0c00222
    [37]
    Watts DP, Bordes J, Brown JR, et al. Photon quantum entanglement in the MeV regime and its application in PET imaging[J]. Nat Commun, 2021, 12(1): 2646. doi: 10.1038/s41467-021-22907-5
    [38]
    Goodheart AE, Locascio JJ, Samore WR, et al. 18F-AV-1451 positron emission tomography in neuropathological substrates of corticobasal syndrome[J]. Brain, 2021, 144(1): 266-77. doi: 10.1093/brain/awaa383
    [39]
    Lindner S, Wängler C, Bailey JJ, et al. Radiosynthesis of[18F] SiFAlin-TATE for clinical neuroendocrine tumor positron emission tomography[J]. Nat Protoc, 2020, 15(12): 3827-43. doi: 10.1038/s41596-020-00407-y
    [40]
    Ordonez AA, Wintaco LM, Mota F, et al. Imaging Enterobacterales infections in patients using pathogen-specific positron emission tomography[J]. Sci Transl Med, 2021, 13(589): 9805. doi: 10.1126/scitranslmed.abe9805
    [41]
    Sun XL, Cai WB, Chen XY. Positron emission tomography imaging using radiolabeled inorganic nanomaterials[J]. Acc Chem Res, 2015, 48(2): 286-94. doi: 10.1021/ar500362y
    [42]
    Lee E, Kamlet AS, Powers DC, et al. A fluoride-derived electrophilic late-stage fluorination reagent for PET imaging[J]. Science, 2011, 334(6056): 639-42. doi: 10.1126/science.1212625
    [43]
    Jong MD, Breeman WAP, Kwekkeboom DJ, et al. Tumor imaging and therapy using radiolabeled somatostatin analogues[J]. Acc Chem Res, 2009, 42(7): 873-80. doi: 10.1021/ar800188e
    [44]
    Cottereau AS, Meignan M, Nioche C, et al. Risk stratification in diffuse large B-cell lymphoma using lesion dissemination and metabolic tumor burden calculated from baseline PET/CT[J]. Ann Oncol, 2021, 32(3): 404-11. doi: 10.1016/j.annonc.2020.11.019
    [45]
    Mu W, Jiang L, Zhang J, et al. Non-invasive decision support for NSCLC treatment using PET/CT radiomics[J]. Nat Commun, 2020, 11(1): 5228. doi: 10.1038/s41467-020-19116-x
    [46]
    Casas Deza D, Sierra Gabarda O, De Los Mozos Ruano A, et al. Positron emission tomography/computed tomography-based diagnosis of endotipsitis[J]. Am J Gastroenterol, 2021, 116(6): 1118. doi: 10.14309/ajg.0000000000000950
    [47]
    Steinberg J, Thomas A, Iravani A. 18F-fluorodeoxyglucose PET/ CT findings in a systemic inflammatory response syndrome after COVID-19 vaccine[J]. Lancet, 2021, 397(10279): e9. doi: 10.1016/S0140-6736(21)00464-5
    [48]
    Miller MA, Adams DH, Pandis D, et al. Hybrid positron emission tomography/magnetic resonance imaging in arrhythmic mitral valve prolapse[J]. JAMA Cardiol, 2020, 5(9): 1000. doi: 10.1001/jamacardio.2020.1555
    [49]
    James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications[J]. Physiol Rev, 2012, 92(2): 897-965. doi: 10.1152/physrev.00049.2010
    [50]
    Wang C, Fan W, Zhang Z, et al. Advanced nanotechnology leading the way to multimodal imaging-guided precision surgical therapy[J]. Adv Mater, 2019, 31(49): e1904329. doi: 10.1002/adma.201904329
    [51]
    Gupta S, Ge Y, Singh A, et al. Multimodality imaging assessment of myocardial fibrosis[J]. JACC: Cardiovasc Imaging, 2021 http://www.sciencedirect.com/science/article/pii/S1936878X21001510
    [52]
    Gan J, Peng Z, Zhu X, et al. Brain functional connectivity analysis based on multi-graph fusion[J]. Med Image Anal, 2021, 71: 102057. doi: 10.1016/j.media.2021.102057
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1434) PDF downloads(162) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return