x
Volume 44 Issue 2
May  2021
Turn off MathJax
Article Contents
Yueyuan LUO, Shasha BAO, Xiaobin GUO, Jun YANG, Chengde LIAO. Research progress of photoacoustic imaging in tumor[J]. Journal of Molecular Imaging, 2021, 44(2): 400-404. doi: 10.12122/j.issn.1674-4500.2021.02.37
Citation: Yueyuan LUO, Shasha BAO, Xiaobin GUO, Jun YANG, Chengde LIAO. Research progress of photoacoustic imaging in tumor[J]. Journal of Molecular Imaging, 2021, 44(2): 400-404. doi: 10.12122/j.issn.1674-4500.2021.02.37

Research progress of photoacoustic imaging in tumor

doi: 10.12122/j.issn.1674-4500.2021.02.37
Funds:

the National Natural Science Found 81760316

the National Natural Science Found 81703155

   

the National Natural Science Found 8206-313

  • Received Date: 2021-01-15
  • Publish Date: 2021-03-20
  • Cancer has always been a difficult problem for human beings, and conventional imaging methods have some limitations in the diagnosis of tumors. Photoacoustic imaging (PAI)is one of flourishing fields of medical imaging methods. Compared with conventional radiology techniques, it can use endogenous or exogenous contrast agents such as melanin and hemoglobin to monitor the concentration of subst-ances related to tumor angiogenesis in real time and noninvasively, or through the molecular targeting exogenous contrast agent to combine with antibodies or peptides to provide information about the structure of the tumor and its molecular information, so as to achieve morphological and functional imaging. In recent years, PAI has made a valuable contribution to the early diagnosis of cancer, the study of tumor angiogenesis, the detection of tumor microenvironment, and the monitoring of cancer progression and treatment response. According to the unique advantages of PAI in tumor imaging. The application progress of photoacoustic imaging in tumor diagnosis, management and treatment guidance were reviewed.

     

  • loading
  • [1]
    Liu YJ, Bhattarai P, Dai ZF, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chem Soc Rev, 2019, 48(7): 2053-108. doi: 10.1039/C8CS00618K
    [2]
    Steinberg I, Huland DM, Vermesh O, et al. Photoacoustic clinical imaging[J]. Photoacoustics, 2019, 14: 77-98. doi: 10.1016/j.pacs.2019.05.001
    [3]
    程茜, 钱梦騄. 多模态光声分子成像进展[J]. 应用声学, 2018, 37(5): 645-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSN201805008.htm
    [4]
    Borg RE, Rochford J. Molecular photoacoustic contrast agents: design principles & applications[J]. Photochem Photobiol, 2018, 94 (6): 1175-209. doi: 10.1111/php.12967
    [5]
    Liu C, Gong X, Lin R, et al. Advances in imaging techniques and genetically encoded probes for photoacoustic imaging[J]. Theranostics, 2016, 6(13): 2414-30. doi: 10.7150/thno.15878
    [6]
    Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 2012, 335(6075): 1458-62. doi: 10.1126/science.1216210
    [7]
    Liu W, Yao J. Photoacoustic microscopy: principles and biomedical applications[J]. Biomed Eng Lett, 2018, 8(2): 203-13. doi: 10.1007/s13534-018-0067-2
    [8]
    Gargiulo S, Albanese S, Mancini M. State-of-the-art preclinical photoacoustic imaging in oncology: recent advances in cancer theranostics[J]. Contrast Media Mol Imaging, 2019, 2019: 5080267. http://www.researchgate.net/publication/332769003_State-of-the-Art_Preclinical_Photoacoustic_Imaging_in_Oncology_Recent_Advances_in_Cancer_Theranostics
    [9]
    Qin S, Li A, Yi M, et al. Recent advances on anti-angiogenesis receptor tyrosine kinase inhibitors in cancer therapy[J]. J Hematol Oncol, 2019, 12(1): 27. doi: 10.1186/s13045-019-0718-5
    [10]
    Attia ABE, Balasundaram G, Moothanchery M, et al. A review of clinical photoacoustic imaging: Current and future trends[J]. Photoacoustics, 2019, 16: 100144. doi: 10.1016/j.pacs.2019.100144
    [11]
    Lundgren K, Holm C, Landberg G. Hypoxia and breast cancer: prognostic and therapeutic implications[J]. Cell Mol Life Sci, 2007, 64(24): 3233-47. doi: 10.1007/s00018-007-7390-6
    [12]
    Niu YL, Bao L, Chen Y, et al. HIF2--induced long noncoding RNA RAB11B-AS1 promotes hypoxia-mediated angiogenesis and breast cancer metastasis[J]. Cancer Res, 2020, 80(5): 964-75. doi: 10.1158/0008-5472.CAN-19-1532
    [13]
    Menezes GLG, Pijnappel RM, Meeuwis C, et al. Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging[J]. Radiology, 2018, 288(2): 355-65. doi: 10.1148/radiol.2018170500
    [14]
    Neuschler EI, Butler R, Young CA, et al. A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists[J]. Radiology, 2018, 287(2): 398-412. doi: 10.1148/radiol.2017172228
    [15]
    Neuschler EI, Lavin PT, Tucker FL, et al. Downgrading and upgrading gray-scale ultrasound BI-RADS categories of benign and malignant masses with optoacoustics: a pilot study[J]. AJR Am J Roentgenol, 2018, 211(3): 689-700. doi: 10.2214/AJR.17.18436
    [16]
    Johnson SP, Ogunlade O, Lythgoe MF, et al. Longitudinal photoacoustic imaging of the pharmacodynamic effect of vascular targeted therapy on tumors[J]. Clin Cancer Res, 2019, 25(24): 7436-47. doi: 10.1158/1078-0432.CCR-19-0360
    [17]
    Li XQ, Heldermon CD, Yao L, et al. High resolution functional photoacoustic tomography of breast cancer[J]. Med Phys, 2015, 42 (9): 5321-8. doi: 10.1118/1.4928598
    [18]
    Menezes GLG, Mann RM, Meeuwis C, et al. Optoacoustic imaging of the breast: correlation with histopathology and histopathologic biomarkers[J]Eur Radiol, 2019, 29(12): 6728-40. doi: 10.1007/s00330-019-06262-0
    [19]
    Dogan BE, Menezes GLG, Butler RS, et al. Optoacoustic imaging and gray-scale US features of breast cancers: correlation with molecular subtypes[J]. Radiology, 2019, 292(3): 564-72. doi: 10.1148/radiol.2019182071
    [20]
    Suzuki Y, Kajita H, Konishi N, et al. Subcutaneous lymphatic vessels in the lower extremities: comparison between photoacoustic lymphangiography and near-infrared fluorescence lymphangiography[J]. Radiology, 2020, 295(2): 469-74. doi: 10.1148/radiol.2020191710
    [21]
    Yang J, Zhang G, Li QQ, et al. Photoacoustic imaging for the evaluation of early tumor response to antivascular treatment[J]. Quant Imaging Med Surg, 2019, 9(2): 160-70. doi: 10.21037/qims.2018.11.06
    [22]
    Martin Brown J, Wilson WR. Exploiting tumour hypoxia in cancer treatment[J]. Nat Rev Cancer, 2004, 4(6): 437-47. doi: 10.1038/nrc1367
    [23]
    Diot G, Metz S, Noske A, et al. Multispectral optoacoustic tomography (MSOT) of human breast cancer[J]. Clin Cancer Res, 2017, 23(22): 6912-22. doi: 10.1158/1078-0432.CCR-16-3200
    [24]
    Dogra VS, Chinni BK, Valluru KS, et al. Multispectral photoacoustic imaging of prostate cancer: preliminary ex vivo results[J]. J Clin Imaging Sci, 2013, 3: 41. doi: 10.4103/2156-7514.119139
    [25]
    Wang XD, Roberts WW, Carson PL, et al. Photoacoustic tomography: a potential new tool for prostate cancer[J]. Biomed Opt Express, 2010, 1(4): 1117-26. doi: 10.1364/BOE.1.001117
    [26]
    Qiu C, Bai YY, Yin TH, et al. Targeted imaging of orthotopic prostate cancer by using clinical transformable photoacoustic molecular probe[J]. BMC Cancer, 2020, 20(1): 419. doi: 10.1186/s12885-020-06801-9
    [27]
    Horiguchi A, Tsujita K, Irisawa K, et al. A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy[J]. Prostate, 2016, 76(3): 307-15. doi: 10.1002/pros.23122
    [28]
    Aguirre A, Ardeshirpour Y, Sanders MM, et al. Potential role of coregistered photoacoustic and ultrasound imaging in ovarian cancer detection and characterization[J]. Transl Oncol, 2011, 4(1): 29-37. doi: 10.1593/tlo.10187
    [29]
    Kamath SD, Bhat RA, Ray S, et al. Autofluorescence of normal, benign, and malignant ovarian tissues: a pilot study[J]. Photomed Laser Surg, 2009, 27(2): 325-35. doi: 10.1089/pho.2008.2261
    [30]
    Salehi HS, Li H, Merkulov A, et al. Coregistered photoacoustic and ultrasound imaging and classification of ovarian cancer: ex vivo and in vivo studies[J]. J Biomed Opt, 2016, 21(4): 46006. doi: 10.1117/1.JBO.21.4.046006
    [31]
    Nandy S, Mostafa A, Hagemann IS, et al. Evaluation of ovarian cancer: initial application of coregistered photoacoustic tomography and US[J]. Radiology, 2018, 289(3): 740-7. doi: 10.1148/radiol.2018180666
    [32]
    Jokerst JV, Cole AJ, van de Sompel D, et al. Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice[J]. ACS Nano, 2012, 6 (11): 10366-77. doi: 10.1021/nn304347g
    [33]
    Bohndiek SE, Sasportas LS, Machtaler S, et al. Photoacoustic tomography detects early vessel regression and normalization during ovarian tumor response to the antiangiogenic therapy trebananib[J]. J Nucl Med, 2015, 56(12): 1942-7. doi: 10.2967/jnumed.115.160002
    [34]
    Yang M, Zhao LY, He XJ, et al. Photoacoustic/ultrasound dual imaging of human thyroid cancers: an initial clinical study[J]. Biomed Opt Express, BOE, 2017, 8(7): 3449-57. doi: 10.1364/BOE.8.003449
    [35]
    Dogra VS, Chinni BK, Valluru KS, et al. Preliminary results of ex vivo multispectral photoacoustic imaging in the management of thyroid cancer[J]. Am J Roentgenol, 2014, 202(6): W552-8. doi: 10.2214/AJR.13.11433
    [36]
    石磊, 田昊, 张希恬, 等. 光声成像技术在早期肝癌诊断和治疗中的应用[J]. 分子影像学杂志, 2019, 42(2): 145-50. doi: 10.12122/j.issn.1674-4500.2019.02.01
    [37]
    Zhou Q, Li Z, Zhou J, et al. In vivo photoacoustic tomography of EGFR overexpressed in hepatocellular carcinoma mouse xenograft[J]. Photoacoustics, 2016, 4(2): 43-54. doi: 10.1016/j.pacs.2016.04.001
    [38]
    Miyata A, Ishizawa T, Kamiya M, et al. Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging[J]. PLoS One, 2014, 9(11): e112667. doi: 10.1371/journal.pone.0112667
    [39]
    Lee S, Kim JH, Lee JH, et al. Non-invasive monitoring of the therapeutic response in sorafenib-treated hepatocellular carcinoma based on photoacoustic imaging[J]. Eur Radiol, 2018, 28(1): 372-81. doi: 10.1007/s00330-017-4960-3
    [40]
    关天培. 基于金纳米棒的光声—荧光双模分子探针的制备及其在肝癌中的应用[D]. 广州: 南方医科大学, 2017.
    [41]
    Breathnach A, Concannon E, Dorairaj JJ, et al. Preoperative measurement of cutaneous melanoma and nevi thickness with photoacoustic imaging[J]. J Med Imaging (Bellingham), 2018, 5(1): 015004. http://europepmc.org/abstract/MED/29487881
    [42]
    Zhou Y, Tripathi SV, Rosman I, et al. Noninvasive determination of melanoma depth using a handheld photoacoustic probe[J]. J Invest Dermatol, 2017, 137(6): 1370-2. doi: 10.1016/j.jid.2017.01.016
    [43]
    Hult J, Dahlstrand U, Merdasa A, et al. Unique spectral signature of human cutaneous squamous cell carcinoma by photoacoustic imaging[J]. J Biophotonics, 2020, 13(5): e201960212. doi: 10.1002/jbio.201960212
    [44]
    Yang G, Amidi E, Chapman W, et al. Co-registered photoacoustic and ultrasound imaging of human colorectal cancer[J]. J Biomed Opt, 2019, 24(12): 1-13. http://www.ncbi.nlm.nih.gov/pubmed/31746155
    [45]
    Leng XD, Chapman W Jr, Rao B, et al. Feasibility of co-registered ultrasound and acoustic-resolution photoacoustic imaging of human colorectal cancer[J]. Biomed Opt Express, 2018, 9(11): 5159-72. doi: 10.1364/BOE.9.005159
    [46]
    Cui HZ, Yang XM. In vivo imaging and treatment of solid tumor using integrated photoacoustic imaging and high intensity focused ultrasound system[J]. Med Phys, 2010, 37(9): 4777-81. doi: 10.1118/1.3480963
    [47]
    Knieling F, Neufert C, Hartmann A, et al. Multispectral optoacoustic tomography for assessment of Crohn's disease activity[J]. N Engl J Med, 2017, 376(13): 1292-4. doi: 10.1056/NEJMc1612455
    [48]
    Tummers WS, Miller SE, Teraphongphom NT, et al. Intraoperative pancreatic cancer detection using tumor-specific multimodality molecular imaging[J]. Ann Surg Oncol, 2018, 25(7): 1880-8. doi: 10.1245/s10434-018-6453-2
    [49]
    Xie ZX, Roberts W, Carson P, et al. Evaluation of bladder microvasculature with high-resolution photoacoustic imaging[J]. Opt Lett, 2011, 36(24): 4815-7. doi: 10.1364/OL.36.004815
    [50]
    Nguyen VP, Oh J, Park S, et al. Feasibility of photoacoustic evaluations on dual-thermal treatment of ex vivo bladder tumors[J]. J Biophotonics, 2017, 10(4): 577-88. doi: 10.1002/jbio.201600045
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (773) PDF downloads(91) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return