x
Volume 43 Issue 4
Dec.  2020
Turn off MathJax
Article Contents
Mingfang LUO, Zhenbo SUN, Kang RONG, Xianglin LI. Principle and research progress of quantitative magnetic resonance imaging[J]. Journal of Molecular Imaging, 2020, 43(4): 572-576. doi: 10.12122/j.issn.1674-4500.2020.04.04
Citation: Mingfang LUO, Zhenbo SUN, Kang RONG, Xianglin LI. Principle and research progress of quantitative magnetic resonance imaging[J]. Journal of Molecular Imaging, 2020, 43(4): 572-576. doi: 10.12122/j.issn.1674-4500.2020.04.04

Principle and research progress of quantitative magnetic resonance imaging

doi: 10.12122/j.issn.1674-4500.2020.04.04
  • Received Date: 2020-08-19
  • Publish Date: 2020-10-20
  • Quantitative magnetic resonance imaging has been widely used in the study of various diseases in recent years. The best application of quantitative magnetic resonance imaging will be helpful for early diagnosis and treatment. In this paper, several common quantitative MRI imaging techniques are classified according to the imaging principle. The principles and research progress of chemical exchange saturation transfer, chemical shift imaging, magnetic resonance spectrum, quantitative susceptibility mapping, and relaxation rate mapping technique are introduced. Finally, this paper analyzed the research progress. The analysis results show that there are many kinds of quantitative magnetic resonance imaging techniques and quantitative substances. Moreover, some quantitative magnetic resonance imaging techniques are overlapping. One technology can quantify multiple substances, and many technologies can be used for quantitative research of a disease-related substance. Although relevant studies have been carried out to compare various techniques for quantifying the same substance, the comparison results still need to be further explored. This paper's analysis results are convenient to understand the standard quantitative magnetic resonance imaging technology and its research progress and provide a reference basis for clinical diagnosis and treatment research.

     

  • loading
  • [1]
    Zhang Q, Zhang HM, Qi WQ, et al. 3.0T ¹H magnetic resonance spectroscopy for assessment of steatosis in patients with chronic hepatitis C[J]. World J Gastroenterol, 2015, 21(21): 6736-44. doi: 10.3748/wjg.v21.i21.6736
    [2]
    Vinogradov E, Sherry AD, Lenkinski RE. CEST: from basic principles to applications, challenges and opportunities[J]. J Magn Reson, 2013, 229: 155-72. doi: 10.1016/j.jmr.2012.11.024
    [3]
    Krikken E, Khlebnikov V, Zaiss M, et al. Amide chemical exchange saturation transfer at 7 T: a possible biomarker for detecting early response to neoadjuvant chemotherapy in breast cancer patients[J]. Breast Cancer Res, 2018, 20(1): 51. doi: 10.1186/s13058-018-0982-2
    [4]
    Takayama Y, Nishie A, Sugimoto M, et al. Amide proton transfer (APT) magnetic resonance imaging of prostate cancer: comparison with Gleason scores[J]. Magn Reson Mater Phy, 2016, 29(4): 671-9. doi: 10.1007/s10334-016-0537-4
    [5]
    Msayib Y, Harston GWJ, Sheerin F, et al. Partial volume correction for quantitative CEST imaging of acute ischemic stroke[J]. Magn Reson Med, 2019, 82(5): 1920-8. doi: 10.1002/mrm.27872
    [6]
    Heo HY, Lee DH, Zhang Y, et al. Insight into the quantitative metrics of chemical exchange saturation transfer (CEST) imaging[J]. Magn Reson Med, 2017, 77(5): 1853-65. doi: 10.1002/mrm.26264
    [7]
    Wang RR, Chen PD, Shen ZW, et al. Brain amide proton transfer imaging of rat with Alzheimer's disease using saturation with frequency alternating RF irradiation method[J]. Front Aging Neurosci, 2019, 11: 217. doi: 10.3389/fnagi.2019.00217
    [8]
    Schüre JR, Shrestha M, Breuer S, et al. The pH sensitivity of APTCEST using phosphorus spectroscopy as a reference method[J]. NMR Biomed, 2019, 32(11): e4125.
    [9]
    Pankowska A, Kochalska K, Łazorczyk A, et al. Chemical exchange saturation transfer (CEST) as a new method of signal obtainment in magnetic resonance molecular imaging in clinical and research practice[J]. Pol J Radiol, 2019, 84: e147-52. doi: 10.5114/pjr.2019.84242
    [10]
    张中伟.磁共振成像中的化学位移效应(二[) J].影像诊断与介入放射学, 2017, 26(3): 255-60. doi: 10.3969/j.issn.1005-8001.2017.03.020
    [11]
    Reeder SB, Pineda AR, Wen Z, et al. Iterative decomposition of water and fat with echo asymmetry and least- squares estimation (IDEAL): Application with fast spin-echo imaging[J]. Magn Reson Med, 2005, 54(3): 636-44. doi: 10.1002/mrm.20624
    [12]
    展影, 安颖颖, 屈瑾, 等. mDixon Quant脂肪定量技术对强直性脊柱炎骶髂关节炎的应用研究[J].国际医学放射学杂志, 2018, 41(6): 672-6.
    [13]
    Eskreis-Winkler S, Corrias G, Monti S, et al. IDEAL-IQ in an oncologic population: meeting the challenge of concomitant liver fat and liver iron[J]. Cancer Imaging, 2018, 18(1): 51. doi: 10.1186/s40644-018-0167-3
    [14]
    常红花, 李杰, 王亚魁, 等. IDEAL-IQ技术定量测量健康青年女性颈部锁骨上脂肪[J].中国医学影像技术, 2018, 34(5): 760-4.
    [15]
    Ecénarro-Montiel A, Baleato-González S, Santiago-Pérez MI, et al. Using the modified Dixon technique to evaluate incidental adrenal lesions on 3T MRI[J]. Radiologia, 2018, 60(6): 485-92. doi: 10.1016/j.rx.2018.06.001
    [16]
    Ren C, Zhu Q, Yuan HS. Mono-exponential and bi- exponential model-based diffusion-weighted MR imaging and IDEAL-IQ sequence for quantitative evaluation of sacroiliitis in patients with ankylosing spondylitis[J]. Clin Rheumatol, 2018, 37(11): 3069-76. doi: 10.1007/s10067-018-4321-x
    [17]
    Zhang Y, Zhou Z, Wang C, et al. Reliability of measuring the fat content of the lumbar vertebral marrow and paraspinal muscles using MRI mDIXON-Quant sequence[J]. Diagn Interv Radiol, 2018, 24(5): 302-7. doi: 10.5152/dir.2018.17323
    [18]
    刘俊, 李建军, 高峰, 等.磁共振波谱技术的临床应用进展[J].中国康复理论与实践, 2019, 25(2): 201-4. doi: 10.3969/j.issn.1006-9771.2019.02.013
    [19]
    Dhamala E, Abdelkefi I, Nguyen M, et al. Validation of in vivo MRS measures of metabolite concentrations in the human brain[J]. NMR Biomed, 2019, 32(3): e4058. doi: 10.1002/nbm.4058
    [20]
    Klohs J, Deistung A, Ielacqua GD, et al. Quantitative assessment of microvasculopathy in arcAβ mice with USPIO-enhanced gradient echo MRI[J]. J Cereb Blood Flow Metab, 2016, 36(9): 1614-24. doi: 10.1177/0271678X15621500
    [21]
    Yan FH, He NY, Lin HM, et al. Iron deposition quantification: Applications in the brain and liver[J]. J Magn Reson Imaging, 2018, 48(2): 301-17. doi: 10.1002/jmri.26161
    [22]
    Kim HG, Park S, Rhee HY, et al. Quantitative susceptibility mapping to evaluate the early stage of Alzheimer's disease[J]. Neuroimage Clin, 2017, 16: 429-38. doi: 10.1016/j.nicl.2017.08.019
    [23]
    Vinayagamani S, Sheelakumari R, Sabarish S, et al. Quantitative susceptibility mapping: technical considerations and clinical applications in neuroimaging[J]. J Magn Reson Imaging, 2020. DOI: 10.1002/jmri.27058.
    [24]
    Sharma SD, Fischer R, Schoennagel BP, et al. MRI-based quantitative susceptibility mapping (QSM) and R2* mapping of liver iron overload: Comparison with SQUID-based biomagnetic liver susceptometry[J]. Magn Reson Med, 2017, 78(1): 264-70. doi: 10.1002/mrm.26358
    [25]
    Lin HM, Wei HJ, He NY, et al. Quantitative susceptibility mapping in combination with water-fat separation for simultaneous liver iron and fat fraction quantification[J]. Eur Radiol, 2018, 28(8): 3494-504. doi: 10.1007/s00330-017-5263-4
    [26]
    Sato R, Shirai T, Soutome Y, et al. Quantitative susceptibility mapping of prostate with separate calculations for water and fat regions for reducing shading artifacts[J]. Magn Reson Imaging, 2020, 66: 22-9. doi: 10.1016/j.mri.2019.11.006
    [27]
    Chow K, Yang Y, Shaw P, et al. Robust free-breathing SASHA T1 mapping with high- contrast image registration[J]. J Cardiovasc Magn Reson, 2016, 18(1): 47. doi: 10.1186/s12968-016-0267-9
    [28]
    Shaw JL, Yang Q, Zhou ZW, et al. Free-breathing, non-ECG, continuous myocardial T1 mapping with cardiovascular magnetic resonance multitasking[J]. Magn Reson Med, 2019, 81(4): 2450-63. doi: 10.1002/mrm.27574
    [29]
    Mozes FE, Tunnicliffe EM, Moolla A, et al. Mapping tissue water T1 in the liver using the MOLLI T1 method in the presence of fat, iron and B0 inhomogeneity[J]. NMR Biomed, 2019, 32(2): e4030. doi: 10.1002/nbm.4030
    [30]
    Tirkes T, Zhao XD, Lin C, et al. Evaluation of variable flip angle, MOLLI, SASHA, and IR-SNAPSHOT pulse sequences for T1 relaxometry and extracellular volume imaging of the pancreas and liver[J]. MAGMA, 2019, 32(5): 559-66. doi: 10.1007/s10334-019-00762-2
    [31]
    Link T M, Neumann J, Li X. Prestructural cartilage assessment using MRI[J]. J Magn Reson Imaging, 2017, 45(4): 949-65. doi: 10.1002/jmri.25554
    [32]
    Song CL, Meng XF, Liu YY, et al. Susceptibility-weighted imaging for metabolic pathway mapping of low-dosage nanoparticles in organisms[J]. Biomaterials, 2020, 230: 119631. doi: 10.1016/j.biomaterials.2019.119631
    [33]
    关基景, 冯衍秋.脑铁沉积的MR定量分析方法:定量磁化率成像与横向弛豫率成像比较[J].南方医科大学学报, 2018, 38(3): 305-11. doi: 10.3969/j.issn.1673-4254.2018.03.10
    [34]
    Han XR, Hong GJ, Chen LL, et al. T1 ρ and T2 mapping for the determination of articular cartilage denaturalization with osteonecrosis of the femoral head: a prospective controlled trial[J]. J Magn Reson Imaging, 2019, 49(3): 760-7. doi: 10.1002/jmri.26267
    [35]
    Johnson CP, Follmer RL, Oguz I, et al. Brain abnormalities in bipolar disorder detected by quantitative T1ρ mapping[J]. Mol Psychiatry, 2015, 20(2): 201-6. doi: 10.1038/mp.2014.157
    [36]
    Stoffers RH, Madden M, Shahid M, et al. Erratum to: Assessment of myocardial injury after reperfused infarction by T1ρ cardiovascular magnetic resonance[J]. J Cardiovasc Magn Reson, 2017, 19(1): 42. doi: 10.1186/s12968-017-0354-6
    [37]
    Xie SS, Li Q, Cheng Y, et al. Impact of liver fibrosis and fatty liver on T1rho measurements: a prospective study[J]. Korean J Radiol, 2017, 18(6): 898-905. doi: 10.3348/kjr.2017.18.6.898
    [38]
    Okuaki T, Takayama Y, Nishie A, et al. T1ρ mapping improvement using stretched- type adiabatic locking pulses for assessment of human liver function at 3T[J]. Magn Reson Imaging, 2017, 40: 17- 23. doi: 10.1016/j.mri.2017.03.006
    [39]
    黎继昕, 苏赟, 赖炳佳, 等.对比MS BLOCK T1rho、MS HS8 T1rho及3D BLOCK T1rho序列肝脏MR图像质量及T1rho值[J].中国医学影像技术, 2019, 35(6): 920-4.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (1409) PDF downloads(126) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return