留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

实时三维经食管超声心动图对二尖瓣脱垂瓣器结构与反流程度的定量研究

耿佳琪 王岳恒 张佳美 杨丽

耿佳琪, 王岳恒, 张佳美, 杨丽. 实时三维经食管超声心动图对二尖瓣脱垂瓣器结构与反流程度的定量研究[J]. 分子影像学杂志, 2022, 45(4): 526-532. doi: 10.12122/j.issn.1674-4500.2022.04.11
引用本文: 耿佳琪, 王岳恒, 张佳美, 杨丽. 实时三维经食管超声心动图对二尖瓣脱垂瓣器结构与反流程度的定量研究[J]. 分子影像学杂志, 2022, 45(4): 526-532. doi: 10.12122/j.issn.1674-4500.2022.04.11
GENG Jiaqi, WANG Yueheng, ZHANG Jiamei, YANG Li. Quantitative study of valve structure and degree of regurgitation in mitral valve prolapse by RT-3D-TEE[J]. Journal of Molecular Imaging, 2022, 45(4): 526-532. doi: 10.12122/j.issn.1674-4500.2022.04.11
Citation: GENG Jiaqi, WANG Yueheng, ZHANG Jiamei, YANG Li. Quantitative study of valve structure and degree of regurgitation in mitral valve prolapse by RT-3D-TEE[J]. Journal of Molecular Imaging, 2022, 45(4): 526-532. doi: 10.12122/j.issn.1674-4500.2022.04.11

实时三维经食管超声心动图对二尖瓣脱垂瓣器结构与反流程度的定量研究

doi: 10.12122/j.issn.1674-4500.2022.04.11
详细信息
    作者简介:

    耿佳琪,在读硕士研究生,E-mail: 2749527045@qq.com

    通讯作者:

    王岳恒,博士,教授,主任医师,博士生导师,E-mail: wyhucg@sina.com

Quantitative study of valve structure and degree of regurgitation in mitral valve prolapse by RT-3D-TEE

  • 摘要:   目的  应用实时三维经食管超声心动图(RT-3D-TEE)评估二尖瓣脱垂病变瓣器结构改变与反流程度之间的相关性。  方法  纳入于我院就诊行经胸超声心动图检查确诊为二尖瓣脱垂伴反流的患者40例,另选取10例作为对照组。50例患者均行RT-3D-TEE检查并采集二尖瓣三维图像,使用4D Auto MVQ脱机工作站进行图像后处理和定量分析。  结果  瓣环三维面积、瓣环二维面积、瓣环周长、前后直径、前外-后内侧直径、非平面角度、总瓣叶面积、后叶面积随反流程度增加而增大,瓣高联合比随反流程度增加而减小,组间差异均有统计学意义(P < 0.05)。瓣环三维面积、瓣环二维面积、瓣环周长、前后直径、总瓣叶面积与反流程度呈极强相关关系(r=0.847、0.843、0.845、0.854、0.854,P < 0.05)。A Total是导致重度二尖瓣反流发生的危险因素(P < 0.01,B=1.576,OR=4.834)。总瓣叶面积(截点值=8.9 cm2)预测重度二尖瓣反流的敏感度为91.7%,特异性为87.5%,曲线下面积为0.948(P < 0.01)。  结论  二尖瓣瓣环大小、扁平程度、瓣叶大小与反流程度呈正相关。总瓣叶面积是导致二尖瓣脱垂患者二尖瓣反流程度加重的危险因素。

     

  • 图  1  图像后处理

    A: 调整轴线位置; B: 放置标记点; C: 预览图像; D: 点击result获得相关参数.

    Figure  1.  Image post-processing.

    图  2  瓣环参数

    A: 瓣环二维面积; B: 瓣环三维面积; C: 瓣环周长; D: 前-后直径; E: 前外-后内侧直径; F: 联合部直径; G: 三角间距离; H: 瓣环高度; I: 非平面角度; J: 二尖瓣环与主动脉瓣环平面夹角.

    Figure  2.  Annulus parameters.

    图  3  瓣叶参数

    A: 前叶面积; B: 后叶面积; C: 前叶长度; D: 后叶长度; E: 前叶角度; F: 后叶角度; G: 闭锁线长度3D;H: 幕状区高度; I: 幕状区容量自定义参数:总瓣叶面积.

    Figure  3.  Leaflet parameters.

    图  4  二尖瓣外科观

    A: 健康对照组的二尖瓣; B: 二尖瓣脱垂伴中度二尖瓣反流患者的二尖瓣; C: 二尖瓣脱垂伴重度二尖瓣反流患者的二尖瓣。随着反流的加重,二尖瓣环面积及各径向参数值逐渐增大,瓣环椭圆形逐渐消失.

    Figure  4.  Mitral valve surgical view.

    图  5  二尖瓣非平面性变化

    A: 健康对照组的二尖瓣; B: 二尖瓣脱垂伴中度二尖瓣反流患者的二尖瓣; C: 二尖瓣脱垂伴重度二尖瓣反流患者的二尖瓣。随着反流程度的加重,二尖瓣环的非平面角度逐渐增大,瓣环变的扁平.

    Figure  5.  Mitral valve nonplanar changes.

    图  6  ROC曲线

    Figure  6.  Receiver operating characteristic curve.

    表  1  两组一般临床资料比较

    Table  1.   Comparison of general clinical data between the two groups (Mean±SD)

    指标 对照组(n=10) 非重度反流组(n=16) 重度反流组(n=24) 总计(n=50)
    男/女(n) 6/4 11/5 15/9 32/18
    年龄(岁) 36±14.66 48±13.13 45±12.73 44±13.64
    身高(cm) 168±7.67 167±8.07 172±7.59 170±7.93
    体质量(kg) 69±11.01 66±14.80 73±13.78 70±13.80
    BM(kg/m2) 24±3.44 23±4.42 24±4.17 24±4.08
    体表面积(m2) 1.79±0.17 1.75±0.23 1.87±0.20 1.82±0.21
    LA(mm) 31±2.69 38±4.19* 44±6.17*#
    LV(mm) 46±3.16 54±5.77* 60±7.32*#
    EDV(mL) 107±21.51 152±32.95* 186±53.07*#
    射血分数(%) 68(5.53) 64.71(6.67) 62(3.30)*
    *P < 0.05 vs对照组; #P < 0.05 vs非重度反流组. LA: 左房内径; LV: 左室内径; EDV: 舒张末期容量.
    下载: 导出CSV

    表  2  三组间二尖瓣瓣环参数比较

    Table  2.   Comparison of parameters of mitral annular among three groups (Mean±SD)

    指标 对照组(n=10) 非重度反流组(n=16) 重度反流组(n=24)
    A3D(cm2) 5.26±0.70 6.83±1.19* 9.85±1.75*#
    A2D(cm2) 4.86±0.66 6.49±1.21* 9.51±1.73*#
    AP(cm) 8.24±0.53 9.34±0.82* 11.21±1.01*#
    DAP(cm) 2.09±0.21 2.54±0.30* 3.15±0.33*#
    DAL-PM(cm) 2.80±0.19 3.10±0.31* 3.70±0.36*#
    DC(cm) 2.79±0.23 3.09±0.29 3.65±0.34*#
    DI(cm) 2.02±0.27 2.24±0.21 2.34±0.36*
    SI(cm/cm) 0.75±0.07 0.82±0.08 0.86±0.08*
    NPA(°) 149±8.67 159±8.69* 166±6.97*#
    AHCWR(%) 16.23±2.82 13.75±3.01* 11.12±1.88*#
    *P < 0.05 vs对照组; #P < 0.05 vs非重度反流组. A3D:瓣环三维面积; A2D:瓣环二维面积; AP:瓣环周长; DAP:前后直径; DAL-PM:前外-后内侧直径; DC:联合部直径; DI:三角间距离; SI:球度指数; NPA:非平面角度; AHCWR:瓣高联合比.
    下载: 导出CSV

    表  3  三组间二尖瓣瓣叶参数比较

    Table  3.   Comparison of mitral valve parameters among three groups (Mean±SD)

    指标 对照组U=10) 非重度反流组(》=16) 重度反流组(》=24)
    A Ant(cm2) 3.29±0.62 3.98±0.89 5.66±1.15*#
    A Post(cm2) 2.43±0.74 3.69±1.15* 5.66±1.62*#
    A Total(cm2) 5.72±0.85 7.67±1.39* 11.32±2.02*#
    L Ant(cm) 1.60±0.27 1.77±0.37 2.22±0.48*#
    L Post(cm) 0.91±0.23 1.18±0.54 1.44±0.58*
    LC Ant 3D(cm) 2.42±0.42 2.88±0.41 3.75±0.54*#
    LC Post 3D(cm) 2.56±0.59 2.94±0.37 3.75±0.57*#
    GAnt(°) 20±4.63 15±9.84 13±7.61*
    0Post(°) 38±9.40 24±18.17 19±15.21*
    HTent(cm) 0.52±0.09 0.37±0.23 0.38±0.22*
    VTent(mL) 0.76±0.28 0.88±0.44 1.48±0.78*#
    *P < 0.05 vs对照组; #P < 0.05 vs非重度反流组. A Ant:前叶面积; A Post:后叶面积; A Total:总瓣叶面积; L Ant:前叶长度; L Post:后叶长度; LC Ant 3D:前闭锁线长度3D;LC Post 3D:后闭锁线长度3D;θAnt:前叶角度; θPost:后叶角度; H Tent:幕状区高度; V Tent:幕状区容量.
    下载: 导出CSV
  • [1] Kukavica D, Guglielmo M, Baggiano A, et al. Arrhythmic mitral valve prolapse: introducing an era of multimodality imaging-based diagnosis and risk stratification[J]. Diagnostics (Basel), 2021, 11 (3): 467. doi: 10.3390/diagnostics11030467
    [2] Dulgheru R, Bruls S, Lancellotti P. How I look at the regurgitant mitral valve—a stepwise echocardiographic assessment[J]. Eur Heart J Cardiovasc Imaging, 2020, 22(5): 491-3.
    [3] Avierinos JF, Gersh BJ, Melton LJ 3rd, et al. Natural history of asymptomatic mitral valve prolapse in the community[J]. Circulation, 2002, 106(11): 1355-61. doi: 10.1161/01.CIR.0000028933.34260.09
    [4] Malkowski MJ, Boudoulas H, Wooley CF, et al. Spectrum of structural abnormalities in floppy mitral valve echocardiographic evaluation[J]. Am Heart J, 1996, 132(1): 145-51. doi: 10.1016/S0002-8703(96)90403-2
    [5] Levine RA, Triulzi MO, Harrigan P, et al. The relationship of mitral annular shape to the diagnosis of mitral valve prolapse[J]. Circulation, 1987, 75(4): 756-67. doi: 10.1161/01.CIR.75.4.756
    [6] Lee APW, Hsiung MC, Salgo IS, et al. Quantitative analysis of mitral valve morphology in mitral valve prolapse with real-time 3-dimensional echocardiography: importance of annular saddle shape in the pathogenesis of mitral regurgitation[J]. Circulation, 2013, 127 (7): 832-41. doi: 10.1161/CIRCULATIONAHA.112.118083
    [7] 崔翼靖, 陈昕, 张慧慧, 等. 经食管实时三维超声研究不同反流程度二尖瓣脱垂患者瓣环动态变化[J]. 中国超声医学杂志, 2017, 33(4): 313-5. doi: 10.3969/j.issn.1002-0101.2017.04.010
    [8] El-Tallawi KC, Zhang P, Azencott R, et al. Valve strain quantitation in normal mitral valves and mitral prolapse with variable degrees of regurgitation[J]. JACC Cardiovasc Imaging, 2021, 14(6): 1099-109. doi: 10.1016/j.jcmg.2021.01.006
    [9] Lancellotti P, Tribouilloy C, Hagendorff A, et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 1: aortic and pulmonary regurgitation (native valve disease)[J]. Eur J Echocardiogr, 2010, 11 (3): 223-44. doi: 10.1093/ejechocard/jeq030
    [10] Perk G, Lang RM, Garcia-Fernandez MA, et al. Use of real time three-dimensional transesophageal echocardiography in intracardiac catheter based interventions[J]. J Am Soc Echocardiogr, 2009, 22 (8): 865-82. doi: 10.1016/j.echo.2009.04.031
    [11] Boltwood CM, Tei C, Wong M, et al. Quantitative echocardiography of the mitral complex in dilated cardiomyopathy: the mechanism of functional mitral regurgitation[J]. Circulation, 1983, 68(3): 498-508. doi: 10.1161/01.CIR.68.3.498
    [12] Members WC, Otto CM, Nishimura RA, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: executive summary: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines[J]. J Am Coll Cardiol, 2021, 77(4): 450-500. doi: 10.1016/j.jacc.2020.11.035
    [13] Bonow RO, O'Gara PT, Adams DH, et al. 2020 focused update of the 2017 ACC expert consensus decision pathway on the management of mitral regurgitation: a report of the American college of cardiology solution set oversight committee[J]. J Am Coll Cardiol, 2020, 75(17): 2236-70. doi: 10.1016/j.jacc.2020.02.005
    [14] Grewal J, Suri R, Mankad S, et al. Mitral annular dynamics in myxomatous valve disease: new insights with real-time 3-dimensional echocardiography[J]. Circulation, 2010, 121(12): 1423-31. doi: 10.1161/CIRCULATIONAHA.109.901181
    [15] Jensen MO, Jensen H, Levine RA, et al. Saddle-shaped mitral valve annuloplasty rings improve leaflet coaptation geometry[J]. J Thorac Cardiovasc Surg, 2011, 142(3): 697-703. doi: 10.1016/j.jtcvs.2011.01.022
    [16] Connell PS, Azimuddin AF, Kim SE, et al. Regurgitation hemodynamics alone cause mitral valve remodeling characteristic of clinical disease states In vitro[J]. Ann Biomed Eng, 2016, 44(4): 954-67. doi: 10.1007/s10439-015-1398-0
    [17] Reimink MS, Kunzelman KS, Verrier ED, et al. The effect of anterior chordal replacement on mitral valve function and stresses[J]. ASAIO J, 1995, 41(3): M754-62. doi: 10.1097/00002480-199507000-00114
    [18] He ZM, Bhattacharya S. Mitral valve annulus tension and the mechanism of annular dilation: an in-vitro study[J]. J Heart Valve Dis, 2010, 19(6): 701-7.
    [19] Jiang LY, Owais K, Matyal R, et al. Dynamism of the mitral annulus: a spatial and temporal analysis[J]. J Cardiothorac Vasc Anesth, 2014, 28(5): 1191-7. doi: 10.1053/j.jvca.2014.03.020
    [20] Faletra FF, Leo LA, Paiocchi VL, et al. Anatomy of mitral annulus insights from non-invasive imaging techniques[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(8): 843-57. doi: 10.1093/ehjci/jez153
    [21] Salgo IS, Gorman JH 3rd, Gorman RC, et al. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress[J]. Circulation, 2002, 106(6): 711-7. doi: 10.1161/01.CIR.0000025426.39426.83
    [22] Padala M, Hutchison RA, Croft LR, et al. Saddle shape of the mitral annulus reduces systolic strains on the P2 segment of the posterior mitral leaflet[J]. Ann Thorac Surg, 2009, 88(5): 1499-504. doi: 10.1016/j.athoracsur.2009.06.042
    [23] Fernández-Ruiz I. Cilia defects linked to mitral valve prolapse[J]. Nat Rev Cardiol, 2019, 16(8): 456.
    [24] Calafiore AM, Totaro A, Paparella D, et al. Mimicking natural mitral adaptation to ischaemic regurgitation: a proposed change in the surgical paradigm[J]. Eur J Cardiothorac Surg, 2020, 58(1): 35-9. doi: 10.1093/ejcts/ezaa163
    [25] Choi A, McPherson DD, Kim H. Biomechanical evaluation of the pathophysiologic developmental mechanisms of mitral valve prolapse: effect of valvular morphologic alteration[J]. Med Biol Eng Comput, 2016, 54(5): 799-809. doi: 10.1007/s11517-015-1371-y
    [26] Enriquez-Sarano M, Avierinos JF, Messika-Zeitoun D, et al. Quantitative determinants of the outcome of asymptomatic mitral regurgitation[J]. N Engl J Med, 2005, 352(9): 875-83. doi: 10.1056/NEJMoa041451
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  94
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 网络出版日期:  2022-07-25
  • 刊出日期:  2022-07-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日