留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

Effect of n-3 polyunsaturated fatty acids on accelerating bone regeneration in mice

Sushant Kumar ROUT Dadi JIN

ROUTSushant Kumar, 金大地. N-3多不饱和脂肪酸促进小鼠骨再生的实验研究[J]. 分子影像学杂志, 2018, 41(3): 287-290. doi: 10.3969/j.issn.1674-4500.2018.03.01
引用本文: ROUTSushant Kumar, 金大地. N-3多不饱和脂肪酸促进小鼠骨再生的实验研究[J]. 分子影像学杂志, 2018, 41(3): 287-290. doi: 10.3969/j.issn.1674-4500.2018.03.01
Sushant Kumar ROUT, Dadi JIN. Effect of n-3 polyunsaturated fatty acids on accelerating bone regeneration in mice[J]. Journal of Molecular Imaging, 2018, 41(3): 287-290. doi: 10.3969/j.issn.1674-4500.2018.03.01
Citation: Sushant Kumar ROUT, Dadi JIN. Effect of n-3 polyunsaturated fatty acids on accelerating bone regeneration in mice[J]. Journal of Molecular Imaging, 2018, 41(3): 287-290. doi: 10.3969/j.issn.1674-4500.2018.03.01

N-3多不饱和脂肪酸促进小鼠骨再生的实验研究

doi: 10.3969/j.issn.1674-4500.2018.03.01

Effect of n-3 polyunsaturated fatty acids on accelerating bone regeneration in mice

More Information
  • 摘要: 目的 探讨n-3多不饱和脂肪酸对小鼠骨折愈合的影响。 方法 构建了Fat-1转基因小鼠与野生小鼠的长骨骨折模型并使用髓内针固定。分别在造模后的2、3、4周通过组织学、影像学评估分析各组小鼠骨折愈合情况。 结果 结果显示,在造模后的2、3、4周,Fat-1转基因小鼠的骨折愈合速度显著快于野生小鼠对照组。此外,X线及小动物CT扫描结果显示,Fat-1转基因小鼠造模后的骨痂生长、骨重构均早于野生对照组小鼠。 结论 内源性的n-3多不饱和脂肪酸可以加速小鼠的骨折愈合。n-3多不饱和脂肪酸极有可能是促进骨折愈合的营养因素之一。

     

  • Figure  1.  X-ray images

    Figure  2.  Goldberg score

    Figure  3.  Represented CT scan

    Figure  4.  Represented Histological Images

  • [1] Hernigou P, Pariat J. History of internal fixation with plates (part 2): new developments after World War II; compressing plates and locked plates[J]. Int Orthop, 2017, 41(7): 1489-500.
    [2] Childs BR, Andres BA, Vallier HA. Economic benefit of Calcium and vitamin D supplementation: does it outweigh the cost of nonunions[J]. J Orthop Trauma, 2016, 30(8): e285-8.
    [3] Banu J, Bhattacharya A, Rahman M, et al. Endogenously produced n-3 fatty acids protect against ovariectomy induced bone loss in fat-1 transgenic mice[J]. J Bone Miner Metab, 2010, 28(6): 617-26.
    [4] Wixted JJ, Fanning PJ, Gaur T, et al. Enhanced fracture repair by leukotriene antagonism is characterized by increased chondrocyte proliferation and early bone formation: a novel role of the cysteinyl LT-1 receptor[J]. J Cell Physiol, 2009, 221(1): 31-9.
    [5] Cottrell JA, O'connor JP. Pharmacological inhibition of 5-lipoxygenase accelerates and enhances fracture-healing[J]. J Bone Joint Surg Am, 2009, 91(11): 2653-65.
    [6] Zeng FF, Xie HL, Fan F, et al. Association of dietary fat intake with the risk of hip fractures in an elderly Chinese population: A matched case-control study[J]. Geriatr Gerontol Int, 2015, 15(10): 1171-8.
    [7] Kruger MC, Coetzee M, Haag M, et al. Long-chain polyunsaturated fatty acids: selected mechanisms of action on bone[J]. Prog Lipid Res, 2010, 49(4): 438-49.
    [8] Bonnet N, Ferrari SL. Effects of long-term supplementation with omega-3 fatty acids on longitudinal changes in bone mass and microstructure in mice[J]. J Nutr Biochem, 2011, 22(7): 665-72.
    [9] Chen TY, Zhang ZM, Zheng XC, et al. Endogenous n-3 polyunsaturated fatty acids (PUFAs) mitigate ovariectomy-induced bone loss by attenuating bone marrow adipogenesis in FAT1 transgenic mice[J]. Drug Des Devel Ther, 2013, 7(6): 545-52.
    [10] Toscano MJ, Booth F, Wilkins LJ, et al. The effects of long (C20/22) and short (C18) chain omega-3 fatty acids on keel bone fractures, bone biomechanics, behavior, and egg production in free-range laying hens[J]. Poult Sci, 2015, 94(5): 823-35.
    [11] Harris TB, Song X, Reinders I, et al. Plasma phospholipid fatty acids and fish-oil consumption in relation to osteoporotic fracture risk in older adults: the Age, Gene/Environment Susceptibility Study[J]. Am J Clin Nutr, 2015, 101(5): 947-55.
    [12] Wauquier F, Léotoing L, Philippe C, et al. Pros and cons of fatty acids in bone biology[J]. Prog Lipid Res, 2015, 58(12): 121-45.
    [13] Kang JX. Fat-1 transgenic mice: a new model for omega-3 research[J]. Prostaglandins Leukot Essent Fatty Acids, 2007, 77(5/6): 263-7.
    [14] Hata M, Baba S, Tachibana M, et al. Kidney preserving surgery for renal cell carcinoma in patients with a solitary kidney or bilateral tumors--with special regard to indication and limitation of enucleation[J]. Japan J Urol, 1991, 82(3): 412-5.
    [15] Hicham DD, David ND. Surgical procedures and experimental outcomes of closed fractures in rodent models[M]. New York: Springer, 2015: 193-211.
    [16] Rahman MM, Bhattacharya A, Banu J, et al. Endogenous n-3 fatty acids protect ovariectomy induced bone loss by attenuating osteoclastogenesis[J]. J Cell Mol Med, 2009, 13(8b): 1833-44.
    [17] Poulsen RC, Moughan PJ, Kruger MC. Long-chain polyunsaturated fatty acids and the regulation of bone metabolism[J]. Exp Biol Med (Maywood), 2007, 232(10): 1275-88.
    [18] Kajarabille N, Díaz-Castro J, Hijano S, et al. A new insight to bone turnover: role of ω-3 polyunsaturated fatty acids[J]. Scient World J, 2013, 25(4): 589641-7.
    [19] Feng R, Wang M, Yan C, et al. Endogenous n-3 fatty acids alleviate Carbon-Tetrachloride-Induced acute liver injury inFat-1transgenic mice[J]. Oxid Med Cell Longev, 2016, 35(11): 1-12.
    [20] Clark CA, Li TF, Kim KO, et al. Prostaglandin E2 inhibits BMP signaling and delays chondrocyte maturation[J]. J Orthop Res, 2009, 27(6): 785-92.
    [21] Zhang X, Ziran N, Goater JJ, et al. Primary murine limb bud mesenchymal cells in long-term culture complete chondrocyte differentiation: TGF-beta delays hypertrophy and PGE2 inhibits terminal differentiation[J]. Bone, 2004, 34(5): 809-17.
    [22] Watkins BA, Li Y, Lippman HE, et al. A test of Ockham's razor: implications of conjugated linoleic acid in bone biology[J]. Am J Clin Nutr, 2004, 79(6 Suppl): 1175-85.
    [23] Tartibian B, Hajizadeh Maleki B, Kanaley J, et al. Long-term aerobic exercise and omega-3 supplementation modulate osteoporosis through inflammatory mechanisms in post-menopausal women: a randomized, repeated measures study[J]. Nutr Metab (Lond), 2011, 8(1): 71-5.
    [24] Cervellati C, Bonaccorsi G, Cremonini E, et al. Bone mass density selectively correlates with serum markers of oxidative damage in post-menopausal women[J]. Clin Chem Laborat Med, 2013, 51(2): 333-8.
  • 加载中
图(4)
计量
  • 文章访问数:  1012
  • HTML全文浏览量:  571
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-10
  • 录用日期:  2018-06-20
  • 刊出日期:  2018-07-01

目录

    /

    返回文章
    返回