留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

内毒素血症心肌损伤机制的研究进展

唐利玲 唐靖 古妙宁 梁佳妮

唐利玲, 唐靖, 古妙宁, 梁佳妮. 内毒素血症心肌损伤机制的研究进展[J]. 分子影像学杂志, 2015, 38(2): 124-127. doi: 10.3969/j.issn.1674-4500.2015.02.18
引用本文: 唐利玲, 唐靖, 古妙宁, 梁佳妮. 内毒素血症心肌损伤机制的研究进展[J]. 分子影像学杂志, 2015, 38(2): 124-127. doi: 10.3969/j.issn.1674-4500.2015.02.18
LIling TANG, Jing TANG, Miaoning GU, Jiani LIANG. Advances in the mechanism of myocardial injury of endotoxemia[J]. Journal of Molecular Imaging, 2015, 38(2): 124-127. doi: 10.3969/j.issn.1674-4500.2015.02.18
Citation: LIling TANG, Jing TANG, Miaoning GU, Jiani LIANG. Advances in the mechanism of myocardial injury of endotoxemia[J]. Journal of Molecular Imaging, 2015, 38(2): 124-127. doi: 10.3969/j.issn.1674-4500.2015.02.18

内毒素血症心肌损伤机制的研究进展

doi: 10.3969/j.issn.1674-4500.2015.02.18
基金项目: 

国家自然科学基金 81301664

详细信息
    作者简介:

    唐利玲,E-mail: 417794139@qq.com

    通讯作者:

    梁佳妮,E-mail: 740624098@qq.com

Advances in the mechanism of myocardial injury of endotoxemia

  • 摘要: 内毒素血症是临床上最为常见的一种全身炎症反应,由于革兰氏阴性细菌释放大量的内毒素进入血液引起,其中心肌损伤是引起患者死亡的重要原因之一,但是其机制目前并不明确。近年来针对内毒素血症心脏损害的机制研究越来越受到重视,主要的研究方向有:炎症因子调控、心肌能量代谢、心肌细胞凋亡及微血管功能障碍。本文就目前关于内毒素血症心肌损伤机制的研究进展进行如下综述,为今后研究和临床治疗内毒素血症心脏损伤提供新的方向和理论依据。

     

  • [1] Tang J, Sun Y, Wu WK, et al. Propofol lowers serum PF4 level and partially corrects hypercoagulopathy in endotoxemic rats[J]. Biochim Biophys Acta, 2010, 1804(9): 1895-901. doi: 10.1016/j.bbapap.2010.06.018
    [2] Tang J, Chen X, Tu W, et al. Propofol inhibits the activation of p38 through up-regulating the expression of annexin A1 to exert its anti-inflammation effect[J]. PLoS One, 2011, 6(12): e27890. doi: 10.1371/journal.pone.0027890
    [3] Liu J, Zhao S, Tang J, et al. Advanced glycation end products and lipopolysaccharide synergistically stimulate proinflammatory cytokine/chemokine production in endothelial cells via activation of both mitogen-activated protein kinases and nuclear factor-kappaB [J]. FEBS J, 2009, 276(16): 4598-606. doi: 10.1111/ejb.2009.276.issue-16
    [4] Nduka OO, Parrillo JE. The pathophysiology of septic shock[J]. Crit Care Nurs Clin North Am, 2011, 23(1): 41-66. doi: 10.1016/j.ccell.2010.12.003
    [5] Van Amersfoort ES, Van Berkel TJ, Kuiper J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock[J]. Clin Microbiol Rev, 2003, 16(3): 379-414. doi: 10.1128/CMR.16.3.379-414.2003
    [6] Brunkhorst F M, Reinhart K.[Diagnosis and causal treatment of sepsis][J]. Internist (Berl), 2009, 50(7): 810-6. doi: 10.1007/s00108-008-2287-5
    [7] Barrientos-Vega R, Mar SM, Morales-Garcia C, et al. Prolonged sedation of critically ill patients with midazolam or propofol: impact on weaning and costs[J]. Crit Care Med, 1997, 25(1): 33-40. doi: 10.1097/00003246-199701000-00009
    [8] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-97. doi: 10.1016/S0092-8674(04)00045-5
    [9] Sayed D, Abdellatif M. MicroRNAs in development and disease[J]. Physiol Rev, 2011, 91(3): 827-87. doi: 10.1152/physrev.00006.2010
    [10] Zhu H, Fan GC. Role of microRNAs in the reperfused myocardium towards post-infarct remodelling[J]. Cardiovasc Res, 2012, 94(2): 284-92. doi: 10.1093/cvr/cvr291
    [11] Wang L, Wang HC, Chen C, et al. Differential expression of plasma miR-146a in sepsis patients compared with non-sepsis-SIRS patients[J]. Exp Ther Med, 2013, 5(4): 1101-4. https://www.ncbi.nlm.nih.gov/pubmed/23596477
    [12] Roderburg C, Luedde M, Vargas CD, et al. Circulating microRNA-150 serum levels predict survival in patients with critical illness and sepsis[J]. PLoS One, 2013, 8(1): e54612. doi: 10.1371/journal.pone.0054612
    [13] Wang H, Zhang P, Chen W, et al. Evidence for serum miR-15a and miR-16 levels as biomarkers that distinguish sepsis from systemic inflammatory response syndrome in human subjects[J]. Clin Chem Lab Med, 2012, 50(8): 1423-8. https://www.researchgate.net/profile/Lixin_Xie/publication/230623168_Evidence_for_serum_miR-15a_and_miR-16_levels_as_biomarkers_that_distinguish_sepsis_from_systemic_inflammatory_response_syndrome_in_human_subjects/links/00b7d520e23e0c805d000000.pdf
    [14] Wang H, Zhang P, Chen W, et al. Serum microRNA signatures identified by Solexa sequencing predict sepsis patients' mortality: a prospective observational study[J]. PLoS One, 2012, 7(6): e38885. doi: 10.1371/journal.pone.0038885
    [15] Wang JF, Yu ML, Yu G, et al. Serum miR-146a and miR-223 as potential new biomarkers for sepsis[J]. Biochem Biophys Res Commun, 2010, 394(1): 184-8. doi: 10.1016/j.bbrc.2010.02.145
    [16] Wang H, Meng K, Chen W, et al. Serum miR-574-5p: a prognostic predictor of sepsis patients[J]. Shock, 2012, 37(3): 263-7. doi: 10.1097/SHK.0b013e318241baf8
    [17] 丁桃, 李阳, 唐睿珠, 等.内毒素血症大鼠心肌组织miRNA差异表达[J].南方医科大学学报, 2015, 35(2), 213-7 http://www.cnki.com.cn/Article/CJFDTOTAL-DYJD201502012.htm
    [18] Chen Q, Wang H, Liu Y, et al. Inducible microRNA-223 down-regulation promotes TLR-triggered IL-6 and IL-1beta production in macrophages by targeting STAT3[J]. PLoS One, 2012, 7(8): e42971. doi: 10.1371/journal.pone.0042971
    [19] Dorhoi A, Iannaccone M, Farinacci M, et al. MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment[J]. J Clin Invest, 2013, 123(11): 4836-48. doi: 10.1172/JCI67604
    [20] Wang X, Huang W, Yang Y, et al. Loss of duplexmiR-223 (5p and 3p) aggravates myocardial depression and mortality in polymicrobial sepsis[J]. Biochim Biophys Acta, 2014, 1842(5): 701-11. doi: 10.1016/j.bbadis.2014.01.012
    [21] Boss O, Samec S, Paoloni-Giacobino A, et al. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression[J]. FEBS Lett, 1997, 408(1): 39-42. doi: 10.1016/S0014-5793(97)00384-0
    [22] Wang X, Liu D, Chai W, et al. The Role of Uncoupling Protein-2 (UCP2) During Myocardial Dysfunction in a Canine Model of Endotoxin Shock[J]. Shock, 2014. https://www.researchgate.net/profile/Su_Longxiang/publication/269767304_The_Role_of_Uncoupling_Protein-2_UCP2_During_Myocardial_Dysfunction_in_a_Canine_Model_of_Endotoxin_Shock/links/54bcff2b0cf218da938fecf7.pdf
    [23] Boudina S, Sena S, Theobald H, et al. Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins[J]. Diabetes, 2007, 56(10): 2457-66. doi: 10.2337/db07-0481
    [24] Merx M W, Weber C. Sepsis and the heart[J]. Circulation, 2007, 116 (7): 793-802. doi: 10.1161/CIRCULATIONAHA.106.678359
    [25] Court O, Kumar A, Parrillo J E, et al. Clinical review: Myocardial depression in sepsis and septic shock[J]. Crit Care, 2002, 6(6): 500-8. doi: 10.1186/cc1822
    [26] Tao F, Peng L, Li J, et al. Association of serum myeloid cells of soluble triggering receptor-1 level with myocardial dysfunction in patients with severe sepsis[J]. Mediators Inflamm, 2013, 2013: 819246. http://paper.medlive.cn/literature/2106240
    [27] Colonna M, Facchetti F. TREM-1 (triggering receptor expressed on myeloid cells): a new player in acute inflammatory responses[J]. J Infect Dis, 2003, 187 Suppl 2: S397-401. https://www.ncbi.nlm.nih.gov/pubmed/12792857
    [28] Bouchon A, Dietrich J, Colonna M. Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes[J]. J Immunol, 2000, 164(10): 4991-5. doi: 10.4049/jimmunol.164.10.4991
    [29] Bouchon A, Facchetti F, Weigand M A, et al. TREM-1 amplifies inflammation and is a crucial mediator of septic shock[J]. Nature, 2001, 410(6832): 1103-7. doi: 10.1038/35074114
    [30] Buerke M, Murohara T, Skurk C, et al. Cardioprotective effect of insulin-like growth factor I in myocardial ischemia followed by reperfusion[J]. Proc Natl Acad Sci U S A, 1995, 92(17): 8031-5. doi: 10.1073/pnas.92.17.8031
    [31] Kaufman R J. Orchestrating the unfolded protein response in health and disease[J]. J Clin Invest, 2002, 110(10): 1389-98. doi: 10.1172/JCI0216886
    [32] Boyce M, Yuan J. Cellular response to endoplasmic reticulum stress: a matter of life or death[J]. Cell Death Differ, 2006, 13(3): 363-73. doi: 10.1038/sj.cdd.4401817
    [33] Glembotski CC. The role of the unfolded protein response in the heart[J]. J Mol Cell Cardiol, 2008, 44(3): 453-9. doi: 10.1016/j.yjmcc.2007.10.017
    [34] Gonzalez-Rey E, Chorny A, Robledo G, et al. Cortistatin, a new antiinflammatory peptide with therapeutic effect on lethal endotoxemia[J]. J Exp Med, 2006, 203(3): 563-71. doi: 10.1084/jem.20052017
    [35] Zhang B, Liu Y, Zhang JS, et al. Cortistatin protects myocardium from endoplasmic reticulum stress induced apoptosis during sepsis [J]. Mol Cell Endocrinol, 2015, 406: 40-8. doi: 10.1016/j.mce.2015.02.016
    [36] Watts JA, Kline JA, Thornton LR, et al. Metabolic dysfunction and depletion of mitochondria in hearts of septic rats[J]. J Mol Cell Cardiol, 2004, 36(1): 141-50. doi: 10.1016/j.yjmcc.2003.10.015
    [37] Yin HY, Wei JR, Zhang R, et al. Effect of glutamine on caspase-3 mRNA and protein expression in the myocardium of rats with sepsis [J]. Am J Med Sci, 2014, 348(4): 315-8. doi: 10.1097/MAJ.0000000000000237
    [38] Avontuur JA, Bruining HA, Ince C. Nitric oxide causes dysfunction of coronary autoregulation in endotoxemic rats[J]. Cardiovasc Res, 1997, 35(2): 368-76. doi: 10.1016/S0008-6363(97)00132-6
    [39] Barroso-Aranda J, Schmid-Schonbein G W, Zweifach B W, et al. Polymorphonuclear neutrophil contribution to induced tolerance to bacterial lipopolysaccharide[J]. Circ Res, 1991, 69(5): 1196-206. doi: 10.1161/01.RES.69.5.1196
    [40] Ellis CG, Bateman RM, Sharpe MD, et al. Effect of a maldistribution of microvascular blood flow on capillary O (2) extraction in sepsis[J]. Am J Physiol Heart Circ Physiol, 2002, 282 (1): H156-64. https://www.researchgate.net/publication/11609108_Effect_of_a_maldistribution_of_microvascular_blood_flow_on_capillary_O2_extraction_in_sepsis
    [41] Bates DO, Curry FE. Vascular endothelial growth factor increases hydraulic conductivity of isolated perfused microvessels[J]. Am J Physiol, 1996, 271(6 Pt 2): H2520-8. https://www.researchgate.net/publication/14211696_Bates_DO_Curry_FEVascular_endothelial_growth_factor_increases_hydraulic_conductivity_of_isolated_perfused_microvessels_Am_J_Physiol_Heart_Circ_Physiol_271_H2520-H2528
    [42] Ferrara N, Bunting S. Vascular endothelial growth factor, a specific regulator of angiogenesis[J]. Curr Opin Nephrol Hypertens, 1996, 5 (1): 35-44. doi: 10.1097/00041552-199601000-00008
    [43] Ku DD, Zaleski JK, Liu S, et al. Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries[J]. Am J Physiol, 1993, 265(2 Pt 2): H586-92.
    [44] Battistini B, Forget MA, Laight D. Potential roles for endothelins in systemic inflammatory response syndrome with a particular relationship to cytokines[J]. Shock, 1996, 5(3): 167-83. doi: 10.1097/00024382-199603000-00002
    [45] Oki M, Jesmin S, Islam MM, et al. Dual blockade of endothelin action exacerbates up-regulated VEGF angiogenic signaling in the heart of lipopolysaccharide-induced endotoxemic rat model[J]. Life Sci, 2014, 118(2): 364-9. doi: 10.1016/j.lfs.2014.02.008
  • 加载中
计量
  • 文章访问数:  735
  • HTML全文浏览量:  224
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-01
  • 刊出日期:  2015-07-02

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日