留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

主观认知下降的结构和功能磁共振成像研究进展

李一杰 韩英妹 张衡 吕静 张仪 林楠 乔英博 王丰

李一杰, 韩英妹, 张衡, 吕静, 张仪, 林楠, 乔英博, 王丰. 主观认知下降的结构和功能磁共振成像研究进展[J]. 分子影像学杂志, 2024, 47(1): 98-101. doi: 10.12122/j.issn.1674-4500.2024.01.18
引用本文: 李一杰, 韩英妹, 张衡, 吕静, 张仪, 林楠, 乔英博, 王丰. 主观认知下降的结构和功能磁共振成像研究进展[J]. 分子影像学杂志, 2024, 47(1): 98-101. doi: 10.12122/j.issn.1674-4500.2024.01.18
LI Yijie, HAN Yingmei, ZHANG Heng, LÜ Jing, ZHANG Yi, LIN Nan, QIAO Yingbo, WANG Feng. Advances in structural and functional magnetic resonance imaging of subjective cognitive decline[J]. Journal of Molecular Imaging, 2024, 47(1): 98-101. doi: 10.12122/j.issn.1674-4500.2024.01.18
Citation: LI Yijie, HAN Yingmei, ZHANG Heng, LÜ Jing, ZHANG Yi, LIN Nan, QIAO Yingbo, WANG Feng. Advances in structural and functional magnetic resonance imaging of subjective cognitive decline[J]. Journal of Molecular Imaging, 2024, 47(1): 98-101. doi: 10.12122/j.issn.1674-4500.2024.01.18

主观认知下降的结构和功能磁共振成像研究进展

doi: 10.12122/j.issn.1674-4500.2024.01.18
基金项目: 国家自然科学基金面上项目(81973930);黑龙江省自然科学基金资助项目(LH2023H065);黑龙江中医药大学研究生创新科研项目立项(2023yjscx012)
详细信息
    作者简介:

    李一杰,在读硕士研究生,E-mail: 1057814027@qq.com

    通讯作者:

    王丰,博士,主任医师,硕士生导师,E-mail: wfzmy123@163.com

Advances in structural and functional magnetic resonance imaging of subjective cognitive decline

Funds: Supported by National Natural Science Foundation of China(81973930)
  • 摘要: 主观认知下降被认为是阿尔茨海默病连续体的第一个临床表现,先于轻度认知障碍。其认知变化以微妙的认知下降和补偿性的认知努力为特征,且已经被证明是阿尔茨海默病的高危阶段。研究患有主观认知下降的人群对于理解早期阿尔茨海默病的病理机制和识别主观认知下降相关的生物标志物很重要,且早期诊断和干预可以有效改善患者的预后。随着正电子发射断层扫描和磁共振成像等先进神经成像技术的出现,越来越多的证据揭示了与主观认知下降症状相关的大脑结构和功能改变。本研究主要从结构磁共振成像、扩散张量成像、功能磁共振成像、机器学习角度分析主观认识下降的诊断、预测病情方面的研究现状进行了综述,以期为揭示其神经生理机制及早期诊断提供影像学依据。

     

  • [1] Gifford KA, Bell SP, Liu DD, et al. Frailty is related to subjective cognitive decline in older women without dementia[J]. J Am Geriatr Soc, 2019, 67(9): 1803-11. doi: 10.1111/jgs.15972
    [2] Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria[J]. Lancet Neurol, 2007, 6(8): 734-46. doi: 10.1016/S1474-4422(07)70178-3
    [3] Jessen F, Amariglio RE, Buckley RF, et al. The characterisation of subjective cognitive decline[J]. Lancet Neurol, 2020, 19(3): 271-8. doi: 10.1016/S1474-4422(19)30368-0
    [4] Viviano RP, Damoiseaux JS. Functional neuroimaging in subjective cognitive decline: current status and a research path forward[J]. Alzheimers Res Ther, 2020, 12(1): 23. doi: 10.1186/s13195-020-00591-9
    [5] Jessen F, Amariglio RE, van Boxtel M, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease[J]. Alzheimers Dement, 2014, 10(6): 844-52. doi: 10.1016/j.jalz.2014.01.001
    [6] Mak E, Gabel S, Mirette H, et al. Structural neuroimaging in preclinical dementia: from microstructural deficits and grey matter atrophy to macroscale connectomic changes[J]. Ageing Res Rev, 2017, 35: 250-64. doi: 10.1016/j.arr.2016.10.001
    [7] Dong GZ, Yang L, Li CS R, et al. Dynamic network connectivity predicts subjective cognitive decline: the Sino-Longitudinal Cognitive impairment and dementia study[J]. Brain Imag Behav, 2020, 14(6): 2692-707. doi: 10.1007/s11682-019-00220-6
    [8] Yue L, Wang T, Wang JY, et al. Asymmetry of hippocampus and amygdala defect in subjective cognitive decline among the community dwelling Chinese[J]. Front Psychiatry, 2018, 9: 226.
    [9] Alexopoulos GS. Depression in the elderly[J]. Lancet, 2005, 365(9475): 1961-70. doi: 10.1016/S0140-6736(05)66665-2
    [10] Göschel L, Kurz L, Dell'Orco A, et al. 7T amygdala and hippocampus subfields in volumetry-based associations with memory: a 3-year follow-up study of early Alzheimer's disease[J]. NeuroImage, 2023, 38: 103439. doi: 10.1016/j.nicl.2023.103439
    [11] Li W, Yue L, Xiao S. Subjective cognitive decline is associated with a higher risk of objective cognitive decline: a cross-sectional and longitudinal study[J]. Front Psychiatry, 2022, 13: 950270. doi: 10.3389/fpsyt.2022.950270
    [12] Chang HI, Chang YT, Huang CW, et al. Structural covariance network as an endophenotype in Alzheimer's disease-susceptible single-nucleotide polymorphisms and the correlations with cognitive outcomes[J]. Front Aging Neurosci, 2021, 13: 721217. doi: 10.3389/fnagi.2021.721217
    [13] Ayyash S, Davis AD, Alders GL, et al. Exploring brain connectivity changes in major depressive disorder using functional-structural data fusion: a CAN-BIND-1 study[J]. Hum Brain Mapp, 2021, 42(15): 4940-57. doi: 10.1002/hbm.25590
    [14] Fu ZR, Zhao MY, He YR, et al. Divergent connectivity changes in gray matter structural covariance networks in subjective cognitive decline, amnestic mild cognitive impairment, and Alzheimer's disease[J]. Front Aging Neurosci, 2021, 13: 686598. doi: 10.3389/fnagi.2021.686598
    [15] Xu K, Wei YC, Zhang SM, et al. Percentage amplitude of fluctuation and structural covariance changes of subjective cognitive decline in patients: a multimodal imaging study[J]. Front Neurosci, 2022, 16: 888174. doi: 10.3389/fnins.2022.888174
    [16] Chen Y, Wang YF, Song ZY, et al. Abnormal white matter changes in Alzheimer's disease based on diffusion tensor imaging: a systematic review[J]. Ageing Res Rev, 2023, 87: 101911. doi: 10.1016/j.arr.2023.101911
    [17] Shao W, Li X, Zhang J, et al. White matter integrity disruption in the pre-dementia stages of Alzheimer's disease: from subjective memory impairment to amnestic mild cognitive impairment[J]. Eur J Neurol, 2019, 26(5): 800-7. doi: 10.1111/ene.13892
    [18] Ohlhauser L, Parker AF, Smart CM, et al. White matter and its relationship with cognition in subjective cognitive decline[J]. . Alzheimers Dement, 2018, 11: 28-35.
    [19] Chao YP, Liu PT B, Wang PN, et al. Reduced inter-voxel white matter integrity in subjective cognitive decline: diffusion tensor imaging with tract-based spatial statistics analysis[J]. Front Aging Neurosci, 2022, 14: 810998. doi: 10.3389/fnagi.2022.810998
    [20] Gong GL. Local diffusion homogeneity (LDH): an inter-voxel diffusion MRI metric for assessing inter-subject white matter variability[J]. PLoS One, 2013, 8(6): e66366. doi: 10.1371/journal.pone.0066366
    [21] Fogel H, Levy-Lamdan O, Zifman N, et al. Brain network integrity changes in subjective cognitive decline: a possible physiological biomarker of dementia[J]. Front Neurol, 2021, 12: 699014. doi: 10.3389/fneur.2021.699014
    [22] Lee YM, Ha JK, Park JM, et al. Impact of apolipoprotein E4 polymorphism on the gray matter volume and the white matter integrity in subjective memory impairment without white matter hyperintensities: voxel-based morphometry and tract-based spatial statistics study under 3-tesla MRI[J]. J Neuroimaging, 2016, 26(1): 144-9. doi: 10.1111/jon.12207
    [23] Shu N, Wang XN, Bi QH, et al. Disrupted topologic efficiency of white matter structural connectome in individuals with subjective cognitive decline[J]. Radiology, 2018, 286(1): 229-38. doi: 10.1148/radiol.2017162696
    [24] Hojjati SH, Ebrahimzadeh A, Khazaee A, et al. Predicting conversion from MCI to AD by integrating rs-fMRI and structural MRI[J]. Comput Biol Med, 2018, 102: 30-9. doi: 10.1016/j.compbiomed.2018.09.004
    [25] Xue C, Yuan BY, Yue YY, et al. Distinct disruptive patterns of default mode subnetwork connectivity across the spectrum of preclinical Alzheimer's disease[J]. Front Aging Neurosci, 2019, 11: 307. doi: 10.3389/fnagi.2019.00307
    [26] Teeuw J, Hulshoff Pol HE, Boomsma DI, et al. Reliability modelling of resting-state functional connectivity[J]. NeuroImage, 2021, 231: 117842. doi: 10.1016/j.neuroimage.2021.117842
    [27] Li ZY, Lin HA, Zhang Q, et al. Individual proportion loss of functional connectivity strength: a novel individual functional connectivity biomarker for subjective cognitive decline populations[J]. Biology, 2023, 12(4): 564. doi: 10.3390/biology12040564
    [28] Jia XZ, Sun JW, Ji GJ, et al. Percent amplitude of fluctuation: a simple measure for resting-state fMRI signal at single voxel level[J]. PLoS One, 2020, 15(1): e0227021. doi: 10.1371/journal.pone.0227021
    [29] Li CX, Li YJ, Zheng LA, et al. Abnormal brain network connectivity in a triple-network model of Alzheimer's disease[J]. J Alzheimers Dis, 2019, 69(1): 237-52. doi: 10.3233/JAD-181097
    [30] Ritchie K, Carrière I, Howett D, et al. Allocentric and egocentric spatial processing in middle-aged adults at high risk of late-onset Alzheimer's disease: the PREVENT dementia study[J]. J Alzheimers Dis, 2018, 65(3): 885-96. doi: 10.3233/JAD-180432
    [31] Liang LY, Zhao LH, Wei YC, et al. Structural and functional hippocampal changes in subjective cognitive decline from the community[J]. Front Aging Neurosci, 2020, 12: 64. doi: 10.3389/fnagi.2020.00064
    [32] Scherr M, Utz L, Tahmasian M, et al. Effective connectivity in the default mode network is distinctively disrupted in Alzheimer's disease a simultaneous resting-state FDG-PET/fMRI study[J]. Hum Brain Mapp, 2021, 42(13): 4134-43. doi: 10.1002/hbm.24517
    [33] Parker AF, Smart CM, Scarapicchia V, et al. Identification of earlier biomarkers for Alzheimer's disease: a multimodal neuroimaging study of individuals with subjective cognitive decline[J]. J Alzheimers Dis, 2020, 77(3): 1067-76. doi: 10.3233/JAD-200299
    [34] Cai CT, Huang CX, Yang CH, et al. Altered patterns of functional connectivity and causal connectivity in salience subnetwork of subjective cognitive decline and amnestic mild cognitive impairment[J]. Front Neurosci, 2020, 14: 288. doi: 10.3389/fnins.2020.00288
    [35] Xue C, Sun HT, Yue YY, et al. Structural and functional disruption of salience network in distinguishing subjective cognitive decline and amnestic mild cognitive impairment[J]. ACS Chem Neurosci, 2021, 12(8): 1384-94. doi: 10.1021/acschemneuro.1c00051
    [36] Liang X, Zou QH, He Y, et al. Topologically reorganized connectivity architecture of default-mode, executive-control, and salience networks across working memory task loads[J]. Cereb Cortex, 2016, 26(4): 1501-11. doi: 10.1093/cercor/bhu316
    [37] Xue C, Qi WZ, Yuan QQ, et al. Disrupted dynamic functional connectivity in distinguishing subjective cognitive decline and amnestic mild cognitive impairment based on the triple-network model[J]. Front Aging Neurosci, 2021, 13: 711009. doi: 10.3389/fnagi.2021.711009
    [38] Lei BY, Cheng NN, Frangi AF, et al. Auto-weighted centralised multi-task learning via integrating functional and structural connectivity for subjective cognitive decline diagnosis[J]. Med Image Anal, 2021, 74: 102248. doi: 10.1016/j.media.2021.102248
    [39] Li AJ, Yue L, Xiao SF, et al. Cognitive function assessment and prediction for subjective cognitive decline and mild cognitive impairment[J]. Brain Imag Behav, 2022, 16(2): 645-58. doi: 10.1007/s11682-021-00545-1
    [40] Yu MH, Guan H, Fang YQ, et al. Domain-prior-induced structural MRI adaptation for clinical progression prediction of subjective cognitive decline[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2022: 24-33.
  • 加载中
计量
  • 文章访问数:  105
  • HTML全文浏览量:  43
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-13
  • 网络出版日期:  2024-01-23
  • 刊出日期:  2024-01-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日