留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

影像组学在肝细胞癌辅助诊断中的研究进展

于琬晴 张丰收 强军 宋卫东 尹丹婷 安青琴

于琬晴, 张丰收, 强军, 宋卫东, 尹丹婷, 安青琴. 影像组学在肝细胞癌辅助诊断中的研究进展[J]. 分子影像学杂志, 2024, 47(1): 93-97. doi: 10.12122/j.issn.1674-4500.2024.01.17
引用本文: 于琬晴, 张丰收, 强军, 宋卫东, 尹丹婷, 安青琴. 影像组学在肝细胞癌辅助诊断中的研究进展[J]. 分子影像学杂志, 2024, 47(1): 93-97. doi: 10.12122/j.issn.1674-4500.2024.01.17
YU Wanqing, ZHANG Fengshou, QIANG Jun, SONG Weidong, YIN Danting, AN Qingqin. Research advances of radiomics in auxiliary diagnosis of hepatocellular carcinoma[J]. Journal of Molecular Imaging, 2024, 47(1): 93-97. doi: 10.12122/j.issn.1674-4500.2024.01.17
Citation: YU Wanqing, ZHANG Fengshou, QIANG Jun, SONG Weidong, YIN Danting, AN Qingqin. Research advances of radiomics in auxiliary diagnosis of hepatocellular carcinoma[J]. Journal of Molecular Imaging, 2024, 47(1): 93-97. doi: 10.12122/j.issn.1674-4500.2024.01.17

影像组学在肝细胞癌辅助诊断中的研究进展

doi: 10.12122/j.issn.1674-4500.2024.01.17
基金项目: 

国家自然科学基金 12104134

详细信息
    作者简介:

    于琬晴,在读硕士研究生,E-mail: 210321221631@stu.haust.edu.cn

    通讯作者:

    张丰收,博士,教授,E-mail: fengshouzhang@163.com

Research advances of radiomics in auxiliary diagnosis of hepatocellular carcinoma

Funds: 

National Natural Science Foundation of China 12104134

  • 摘要: 肝细胞癌是常见的恶性肿瘤之一,其恶性程度高,预后性差,具有高发病率和高死亡率的特点。影像组学提供了一种量化分析方法,可将医学影像中的组织病理学、肿瘤生物学等信息转化为高维量化特征信息,并结合人工智能算法进行数据挖掘与统计分析,协助临床进行肿瘤的早期诊疗。本文介绍了影像组学在肝细胞癌鉴别诊断、病理分级、微血管侵犯与免疫组化标志物预测中的研究进展,讨论了在数据量、模型可靠性等方面存在的不足,并指出未来可向多中心、多任务等方向发展,以期为肝细胞癌的辅助诊断提供参考。

     

  • [1] Hu J, Gong N, Li D, et al. Identifying hepatocellular carcinoma patients with survival benefits from surgery combined with chemotherapy: based on machine learning model[J]. World J Surg Oncol, 2022, 20(1): 377. doi: 10.1186/s12957-022-02837-2
    [2] Sartoris R, Gregory J, Dioguardi Burgio M, et al. HCC advances in diagnosis and prognosis: digital and Imaging[J]. Liver Int, 2021, 41(S1): 73-7. doi: 10.1111/liv.14865
    [3] Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-6. doi: 10.1016/j.ejca.2011.11.036
    [4] Ramadan SZ. Methods used in computer-aided diagnosis for breast cancer detection using mammograms: a review[J]. J Healthc Eng, 2020, 2020: 1-21.
    [5] Wei JW, Jiang HY, Zhou Y, et al. Radiomics: a radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma[J]. Dig Liver Dis, 2023, 55(7): 833-47. doi: 10.1016/j.dld.2022.12.015
    [6] Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning[J]. Electron Mark, 2021, 31(3): 685-95. doi: 10.1007/s12525-021-00475-2
    [7] Liu J, Gong MG, He HB. Deep associative neural network for associative memory based on unsupervised representation learning[J]. Neural Netw, 2019, 113: 41-53. doi: 10.1016/j.neunet.2019.01.004
    [8] Huang L, Song M, Shen H, et al. Deep learning methods for omics data imputation[J]. Biology, 2023, 12(10): 1313. doi: 10.3390/biology12101313
    [9] Tietz E, Truhn D, Müller-Franzes G, et al. A radiomics approach to predict the emergence of new hepatocellular carcinoma in computed tomography for high-risk patients with liver cirrhosis[J]. Diagnostics, 2021, 11(9): 1650. doi: 10.3390/diagnostics11091650
    [10] Xiao XJ, Zhao JF, Li S. Task relevance driven adversarial learning for simultaneous detection, size grading, and quantification of hepatocellular carcinoma via integrating multi-modality MRI[J]. Med Image Anal, 2022, 81: 102554. doi: 10.1016/j.media.2022.102554
    [11] Candita G, Rossi S, Cwiklinska K, et al. Imaging diagnosis of hepatocellular carcinoma: a state-of-the-art review[J]. Diagnostics, 2023, 13(4): 625. doi: 10.3390/diagnostics13040625
    [12] Mokrane FZ, Lu L, Vavasseur A, et al. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules[J]. Eur Radiol, 2020, 30(1): 558-70. doi: 10.1007/s00330-019-06347-w
    [13] 杨浩然, 马密密, 曹新山. 基于影像组学的肝细胞癌多中心研究进展[J]. 磁共振成像, 2021, 12(8): 101-3.
    [14] Stollmayer R, Budai BK, Tóth A, et al. Diagnosis of focal liver lesions with deep learning-based multi-channel analysis of hepatocyte-specific contrast-enhanced magnetic resonance imaging[J]. World J Gastroenterol, 2021, 27(35): 5978-88. doi: 10.3748/wjg.v27.i35.5978
    [15] Liu XY, Khalvati F, Namdar K, et al. Can machine learning radiomics provide pre-operative differentiation of combined hepatocellular cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma to inform optimal treatment planning?[J]. Eur Radiol, 2021, 31(1): 244-55. doi: 10.1007/s00330-020-07119-7
    [16] Huang XL, Long LL, Wei JQ, et al. Radiomics for diagnosis of dual-phenotype hepatocellular carcinoma using Gd-EOB-DTPA-enhanced MRI and patient prognosis[J]. J Cancer Res Clin Oncol, 2019, 145(12): 2995-3003. doi: 10.1007/s00432-019-03062-3
    [17] Peng YT, Lin P, Wu LY, et al. Ultrasound-based radiomics analysis for preoperatively predicting different histopathological subtypes of primary liver cancer[J]. Front Oncol, 2020, 10: 1646. doi: 10.3389/fonc.2020.01646
    [18] Lv JQ, Chen XH, Liu XR, et al. Imbalanced data correction based PET/CT radiomics model for predicting lymph node metastasis in clinical stage T1 lung adenocarcinoma[J]. Front Oncol, 2022, 12: 788968. doi: 10.3389/fonc.2022.788968
    [19] Chen W, Zhang T, Xu L, et al. Radiomics analysis of contrast-enhanced CT for hepatocellular carcinoma grading[J]. Front Oncol, 2021, 11: 660509. doi: 10.3389/fonc.2021.660509
    [20] Brancato V, Garbino N, Salvatore M, et al. MRI-based radiomic features help identify lesions and predict histopathological grade of hepatocellular carcinoma[J]. Diagnostics, 2022, 12(5): 1085. doi: 10.3390/diagnostics12051085
    [21] Ameli S, Venkatesh BA, Shaghaghi M, et al. Role of MRI-derived radiomics features in determining degree of tumor differentiation of hepatocellular carcinoma[J]. Diagnostics, 2022, 12(10): 2386. doi: 10.3390/diagnostics12102386
    [22] Wu MH, Tan HN, Gao F, et al. Predicting the grade of hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics signature[J]. Eur Radiol, 2019, 29(6): 2802-11. doi: 10.1007/s00330-018-5787-2
    [23] Mao YF, Wang JC, Zhu Y, et al. Gd-EOB-DTPA-enhanced MRI radiomic features for predicting histological grade of hepatocellular carcinoma[J]. Hepatobiliary Surg Nutr, 2022, 11(1): 13-24. doi: 10.21037/hbsn-19-870
    [24] 甘富文, 武明辉, 吴亚平, 等. 多特征融合的肝细胞癌分化等级术前预测方法研究[J]. 计算机应用与软件, 2022, 39(7): 147-53.
    [25] Chartampilas E, Rafailidis V, Georgopoulou V, et al. Current imaging diagnosis of hepatocellular carcinoma[J]. Cancers, 2022, 14(16): 3997. doi: 10.3390/cancers14163997
    [26] Li C, Liu Y, Xu JY, et al. Contrast-enhanced intraoperative ultrasonography with kupffer phase may change treatment strategy of metastatic liver tumors - A single-centre prospective study[J]. Ther Clin Risk Manag, 2021, 17: 789-96. doi: 10.2147/TCRM.S317469
    [27] Li C, Xu JY, Liu YA, et al. Kupffer phase radiomics signature in sonazoid-enhanced ultrasound is an independent and effective predictor of the pathologic grade of hepatocellular carcinoma[J]. J Oncol, 2022, 2022: 1-7.
    [28] Li J, Yang F, Li J, et al. Postoperative adjuvant therapy for hepatocellular carcinoma with microvascular invasion[J]. World J Gastrointest Surg, 2023, 15(1): 19-31. doi: 10.4240/wjgs.v15.i1.19
    [29] Yang L, Gu DS, Wei JW, et al. A radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. Liver Cancer, 2019, 8(5): 373-86. doi: 10.1159/000494099
    [30] Yao WT, Yang S, Ge Y, et al. Computed tomography radiomics-based prediction of microvascular invasion in hepatocellular carcinoma[J]. Front Med (Lausanne), 2022, 9: 819670.
    [31] Liu P, Tan XZ, Zhang T, et al. Prediction of microvascular invasion in solitary hepatocellular carcinoma≤5 cm based on computed tomography radiomics[J]. World J Gastroenterol, 2021, 27(17): 2015-24. doi: 10.3748/wjg.v27.i17.2015
    [32] Banerjee S, Wang DS, Kim HJ, et al. A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma[J]. Hepatology, 2015, 62(3): 792-800. doi: 10.1002/hep.27877
    [33] Zhang YF, Wei QY, Huang YN, et al. Deep learning of liver contrast-enhanced ultrasound to predict microvascular invasion and prognosis in hepatocellular carcinoma[J]. Front Oncol, 2022, 12: 878061. doi: 10.3389/fonc.2022.878061
    [34] 赵华飞, 冯智超, 李慧玲, 等. 感兴趣区范围对CT影像组学模型预测肝细胞癌微血管侵犯的影响[J]. 中南大学学报: 医学版, 2022, 47(8): 1049-57.
    [35] Hu F, Zhang YH, Li M, et al. Preoperative prediction of microvascular invasion risk grades in hepatocellular carcinoma based on tumor and peritumor dual-region radiomics signatures[J]. Front Oncol, 2022, 12: 853336. doi: 10.3389/fonc.2022.853336
    [36] Kmeid M, Lukose G, Hodge K, et al. Aberrant expression of SATB2, CDX2, CDH17 and CK20 in hepatocellular carcinoma: a pathological, clinical and outcome study[J]. Histopathology, 2021, 79(5): 768-78. doi: 10.1111/his.14420
    [37] Hammoud GM, Ibdah JA. Are we getting closer to understanding intratumor heterogeneity in hepatocellular carcinoma[J]?. Hepatobiliary Surg Nutr, 2016, 5(2): 188-90.
    [38] Loreto C, Caltabiano R. Immunohistochemical expression[J]. Appl Sci, 2021, 11(1): 360. doi: 10.3390/app11010360
    [39] 袁恩雨, 宋彬. 肝癌影像组学的临床应用: 现状与展望[J]. 放射学实践, 2023, 38(9): 1084-8.
    [40] Hu XJ, Wang Q, Huang GB, et al. Gadoxetic acid-enhanced MRI-based radiomics signature: a potential imaging biomarker for identifying cytokeratin 19-positive hepatocellular carcinoma[J]. Comput Math Methods Med, 2023, 2023: 5424204.
    [41] Ding ZR, Wu YJ, Fang GX, et al. Development and validation a radiomics nomogram for predicting thymidylate synthase status in hepatocellular carcinoma based on Gd-DTPA contrast enhanced MRI[J]. BMC Cancer, 2023, 23(1): 991. doi: 10.1186/s12885-023-11096-7
    [42] Hectors SJ, Lewis S, Besa C, et al. MRI radiomics features predict immuno-oncological characteristics of hepatocellular carcinoma[J]. Eur Radiol, 2020, 30(7): 3759-69.
    [43] Wu CY, Chen JF, Fan YQ, et al. Nomogram based on CT radiomics features combined with clinical factors to predict ki-67 expression in hepatocellular carcinoma[J]. Front Oncol, 2022, 12: 943942.
    [44] Kennedy P. Editorial for "diagnostic value of Gd-EOB-DTPA-enhanced MRI for the expression of Ki67 and microvascular density in hepatocellular carcinoma"[J]. Magnetic Resonance Imaging, 2020, 51(6): 1764-5.
    [45] Yuan GS, Song YD, Li Q, et al. Development and validation of a contrast-enhanced CT-based radiomics nomogram for prediction of therapeutic efficacy of anti-PD-1 antibodies in advanced HCC patients[J]. Front Immunol, 2021, 11: 613946.
    [46] Tian YC, Komolafe TE, Zheng J, et al. Assessing PD-L1 expression level via preoperative MRI in HCC based on integrating deep learning and radiomics features[J]. Diagnostics, 2021, 11(10): 1875.
  • 加载中
计量
  • 文章访问数:  122
  • HTML全文浏览量:  61
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-17
  • 网络出版日期:  2024-01-23
  • 刊出日期:  2024-01-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日