留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

基于深度学习的乳腺X线辅助诊断系统对乳腺钙化检出和良恶性分类的临床价值

翟天旭 张敏伟 张子秋 孔德懿 李德春

翟天旭, 张敏伟, 张子秋, 孔德懿, 李德春. 基于深度学习的乳腺X线辅助诊断系统对乳腺钙化检出和良恶性分类的临床价值[J]. 分子影像学杂志, 2024, 47(1): 25-30. doi: 10.12122/j.issn.1674-4500.2024.01.05
引用本文: 翟天旭, 张敏伟, 张子秋, 孔德懿, 李德春. 基于深度学习的乳腺X线辅助诊断系统对乳腺钙化检出和良恶性分类的临床价值[J]. 分子影像学杂志, 2024, 47(1): 25-30. doi: 10.12122/j.issn.1674-4500.2024.01.05
ZHAI Tianxu, ZHANG Mingwei, ZHANG Ziqiu, KONG Deyi, LI Dechun. Clinical value of a deep learn-based mammography assisted diagnosis system for breast calcification detection and benign and malignant classification[J]. Journal of Molecular Imaging, 2024, 47(1): 25-30. doi: 10.12122/j.issn.1674-4500.2024.01.05
Citation: ZHAI Tianxu, ZHANG Mingwei, ZHANG Ziqiu, KONG Deyi, LI Dechun. Clinical value of a deep learn-based mammography assisted diagnosis system for breast calcification detection and benign and malignant classification[J]. Journal of Molecular Imaging, 2024, 47(1): 25-30. doi: 10.12122/j.issn.1674-4500.2024.01.05

基于深度学习的乳腺X线辅助诊断系统对乳腺钙化检出和良恶性分类的临床价值

doi: 10.12122/j.issn.1674-4500.2024.01.05
基金项目: 

江苏省十四五医学重点学科项目 ZDXK202237

徐州市科学技术局社会发展项目 KC15SH061

详细信息
    作者简介:

    翟天旭,在读硕士研究生,E-mail: 382852742@qq.com

    通讯作者:

    李德春,硕士,主任医师,E-mail: 18952171358@189.cn

Clinical value of a deep learn-based mammography assisted diagnosis system for breast calcification detection and benign and malignant classification

  • 摘要:   目的  探讨基于深度学习的乳腺X线辅助诊断(DL)系统对乳腺钙化检出和良恶性分类的临床价值。  方法  回顾性分析在2020年1月~2022年12月在徐州市中心医院接受双侧乳腺X线检查的400例患者的头尾位和内外斜位影像资料。以2位具有15年以上乳腺X线诊断经验的副主任医师对乳腺钙化的一致判断作为标准组,由1位低年资住院医师、1位高年资主治医师和DL系统分别盲法独立阅片,经过4周洗脱期后,由联合模型(低年资医师+DL系统)再次盲法独立阅片。结合双向表χ2检验,评价不同乳腺ACR类型、钙化形态和分布、BI-RADS分类对钙化检出的影响,并采用ROC曲线下面积(AUC)评价低年资住院医师、高年资主治医师、DL系统和联合模型(低年资住院医师+DL系统)对可疑钙化检出的性能差异。  结果  1600幅图像(400例患者)共检出BI-RADS 3级及以上可疑钙化975处。低年资住院医师A,高年资主治医师B、DL系统和联合模型对钙化检出的敏感度分别为81.95%、96.62%、93.03%、96.41%。高年资主治医师B、DL系统和联合模型对钙化检出的敏感度不受乳腺ACR类型、钙化形态和分布、BI-RADS分类影响,而低年资住院医师A对钙化检出的敏感度受其影响。联合模型(低年资住院医师+DL系统)在预测钙化良恶性方面具有良好的AUC值、敏感度和特异性,分别为0.891、90.0%和88.2%,和低年资住院医师之间存在差异(P < 0.01)。在DL系统帮助下,低年资住院医师的诊断性能得到明显改善,AUC值由0.740提升到0.891。  结论  DL系统对BI-RADS 3级及以上可疑钙化检出敏感度高且具有较高的良恶性钙化分类性能,与高年资主治医师相当。在DL系统的帮助下,低年资医师可以减少钙化漏诊、误诊,提高乳腺癌筛查和诊断的准确性。

     

  • 图  1  联合模型、医师B、DL系统和医师A预测良恶性钙化的性能比较

    Figure  1.  Comparison of the performance of the combined model, physician B, DL system and physician A in predicting benign and malignant calcifications.

    图  2  漏检钙化病例(呈区域性分布和团簇样分布的细小多形性钙化、不定形模糊钙化)

    Figure  2.  Missed calcification cases (small pleomorphic calcification with regional distribution and cluster distribution, amorphous fuzzy calcification).

    表  1  不同ACR乳腺构成的钙化检出比较

    Table  1.   Comparison of calcification in different ACR breast compositions [n(%)]

    Models ACR Total
    a b c d
    Standardized group (n) 47 346 466 116 975
    Physician A 47(100.00) 281(81.21) 385(76.82) 86(51.81) 799(81.95)
    Physician B 47(100.00) 308(89.02) 456(97.85) 110(94.83) 942(96.62)
    DL system 47(100.00) 326(94.22) 445(95.49) 107(92.24) 907(93.03)
    Joint model 47(100.00) 327(94.51) 454(97.42) 108(93.10) 940(96.41)
    下载: 导出CSV

    表  2  不同分布可疑钙化钙化检出比较

    Table  2.   Comparison of the detection of suspicious calcifications with different distributions of calcifications [n(%)]

    Models Distribution of calcification Total
    Regional distribution Cluster distribution Diffuse distribution Linear distribution Segment distribution
    Standardized group (n) 183 269 171 214 138 975
    Physician A 133(72.68) 195(72.49) 170(99.42) 193(90.19) 108(78.26) 799(81.95)
    Physician B 178(97.27) 256(95.17) 171(100.00) 208(97.20) 126(91.30) 942(96.62)
    DL System 169(92.35) 240(89.22) 171(100.00)) 205(95.79) 132(95.65) 907(93.03)
    Joint model 173(94.54) 252(93.68) 171(100.00) 207(96.73) 133(96.38) 940(96.41)
    下载: 导出CSV

    表  3  不同形态可疑钙化钙化检出比较

    Table  3.   Comparison of the detection of different forms of suspicious calcification calcifications [n(%)]

    Models Calcification morphology Total
    Roughness heterogeneity Indeterminate fuzzy Small pleomorphic Linear branching Punctate
    Standardized group (n) 271 256 189 176 83 975
    Physician A 241(88.93) 187(73.05) 142(75.13) 151(85.80) 78(93.98) 799(81.95)
    Physician B 263(97.05) 245(95.70) 176(93.12) 174(98.86) 81(97.59) 942(96.62)
    DL System 264(97.42) 234(91.41) 167(88.36) 167(94.89) 78(93.98) 907(93.03)
    Joint model 265(97.79) 245(95.70) 179(94.71) 171(97.16) 80(96.39) 940(96.41)
    下载: 导出CSV

    表  4  不同BI-RADS分级可疑钙化钙化检出比较

    Table  4.   Comparison of different BI-RADS grading of suspicious calcifications for calcification detection [n(%)]

    Models BI-RADS grading Total
    3 4A 4B 4C 5
    Standardized group (n) 54 385 326 154 56 975
    Physician A 47(87.04) 316(82.08) 259(79.45) 125(81.17) 52(92.86) 799(81.95)
    Physician B 52(96.30) 373(96.89) 310(95.09) 148(96.10) 56(100.00) 942(96.62)
    DL System 47(87.04) 352(91.43) 312(95.71) 143(92.86) 53(94.64) 907(93.03)
    Joint model 52(96.30) 365(94.81) 316(96.93) 147(95.45) 56(100.00) 940(96.41)
    下载: 导出CSV

    表  5  联合模型、医师B、DL系统和医师A之间的比较

    Table  5.   Comparison between the joint model, physician B, DL system and physician A

    Models Sensitivity
    (%)
    Specificity
    (%)
    Positive predictive value(%) Negative predictive value(%) AUC(95% CI) P vs joint model
    Joint model 90.0(189/210) 88.2(675/765) 67.7(189/279) 97.0(675/696) 0.891(0.864-0.918) N/A
    Physician B 92.4(194/210) 97.5(746/765) 91.1(194/213) 97.9(746/762) 0.949(0.928-0.971) < 0.001
    DL system 91.0(191/210) 92.9(711/765) 78.0(191/245) 97.4(711/730) 0.919(0.895-0.944) < 0.001
    Physician A 68.1(143/210) 80.0(612/765) 48.3(143/296) 90.1(612/679) 0.740(0.700-0.781) < 0.001
    下载: 导出CSV
  • [1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA A Cancer J Clinicians, 2018, 68(6): 394-424. doi: 10.3322/caac.21492
    [2] Harbeck N, Gnant M. Breast cancer[J]. Lancet, 2017, 389(10074): 1134-50. doi: 10.1016/S0140-6736(16)31891-8
    [3] Son J, Lee SE, Kim EK, et al. Prediction of breast cancer molecular subtypes using radiomics signatures of synthetic mammography from digital breast tomosynthesis[J]. Sci Rep, 2020, 10(1): 21566. doi: 10.1038/s41598-020-78681-9
    [4] 金征宇. 人工智能医学影像应用: 现实与挑战[J]. 放射学实践, 2018, 33(10): 989-91.
    [5] 王小琦, 刘鹏, 陈赜, 等. 基于深度学习的乳腺X线摄影钙化检测系统对乳腺可疑钙化的检出效能[J]. 中国医学影像技术, 2019, 35(12): 1784-8.
    [6] Fenton JJ, Taplin SH, Carney PA, et al. Influence of computer-aided detection on performance of screening mammography[J]. N Engl J Med, 2007, 356(14): 1399-409. doi: 10.1056/NEJMoa066099
    [7] Niu SH, Huang JH, Li J, et al. Application of ultrasound artificial intelligence in the differential diagnosis between benign and malignant breast lesions of BI-RADS 4A[J]. BMC Cancer, 2020, 20(1): 959. doi: 10.1186/s12885-020-07413-z
    [8] 李欣, 梁森, 黄正南, 等. 乳腺X线AI智能病灶检测[J]. 放射学实践, 2018, 33(10): 1029-32.
    [9] 周娟, 王婷婷, 李明, 等. 基于深度学习的乳腺X线摄影钙化检出系统评估[J]. 中华放射学杂志, 2019, 53(11): 6.
    [10] 哈婷婷, 潘俊, 王洪光, 等. 基于深度学习的乳腺X线摄影病灶检出系统的临床价值[J]. 中国医学影像技术, 2019, 35(12): 1789-93.
    [11] 中华医学会放射学分会乳腺学组. 乳腺X线摄影检查和诊断共识[J]. 中华放射学杂志, 2014, 48(9): 711-7.
    [12] Oliver A, Freixenet J, Martí J, et al. A review of automatic mass detection and segmentation in mammographic images[J]. Med Image Anal, 2010, 14(2): 87-110.
    [13] Liu HH, Chen YH, Zhang YZ, et al. A deep learning model integrating mammography and clinical factors facilitates the malignancy prediction of BI‑RADS 4 microcalcifications in breast cancer screening[J]. Eur Radiol, 2021, 31(8): 5902-12. doi: 10.1007/s00330-020-07659-y
    [14] Lotter W, Diab AR, Haslam B, et al. Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach[J]. Nat Med, 2021, 27(2): 244-9.
    [15] Zhang F, Wu SD, Zhang C, et al. Multi-domain features for reducing false positives in automated detection of clustered microcalcifications in digital breast tomosynthesis[J]. Med Phys, 2019, 46(3): 1300-8.
    [16] Lei CQ, Wei W, Liu ZY, et al. Mammography-based radiomic analysis for predicting benign BI-RADS category 4 calcifications[J]. Eur J Radiol, 2019, 121: 108711.
    [17] Lehman CD, Arao RF, Sprague BL, et al. National performance benchmarks for modern screening digital mammography: update from the breast cancer surveillance consortium[J]. Radiology, 2017, 283(1): 49-58.
    [18] 彭芳芳, 沈坤炜. 中西方女性乳腺密度与乳腺癌发病关系的研究进展[J]. 中国癌症防治杂志, 2020, 12(4): 469-74.
    [19] 徐泽园, 秦耿耿, 陈卫国. 致密型乳腺影像筛查技术及研究进展[J]. 国际医学放射学杂志, 2019, 42(3): 312-6.
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  61
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-05
  • 网络出版日期:  2024-01-23
  • 刊出日期:  2024-01-20

目录

    /

    返回文章
    返回