留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

基于CT获得的心肌应变参数在肥厚型心肌病和高血压性心脏病中的应用

何泽明 郑敏文 赵宏亮 韩冬 于楠 张喜荣 贺太平

何泽明, 郑敏文, 赵宏亮, 韩冬, 于楠, 张喜荣, 贺太平. 基于CT获得的心肌应变参数在肥厚型心肌病和高血压性心脏病中的应用[J]. 分子影像学杂志, 2024, 47(1): 7-13. doi: 10.12122/j.issn.1674-4500.2024.01.02
引用本文: 何泽明, 郑敏文, 赵宏亮, 韩冬, 于楠, 张喜荣, 贺太平. 基于CT获得的心肌应变参数在肥厚型心肌病和高血压性心脏病中的应用[J]. 分子影像学杂志, 2024, 47(1): 7-13. doi: 10.12122/j.issn.1674-4500.2024.01.02
HE Zeming, ZHENG Minwen, ZHAO Hongliang, HAN Dong, YU Nan, ZHANG Xirong, HE Taiping. CT application in early left ventricular function assessment and differential diagnosis: the crucial role of myocardial strain parameters in hypertrophic cardiomyopathy and hypertensive heart disease[J]. Journal of Molecular Imaging, 2024, 47(1): 7-13. doi: 10.12122/j.issn.1674-4500.2024.01.02
Citation: HE Zeming, ZHENG Minwen, ZHAO Hongliang, HAN Dong, YU Nan, ZHANG Xirong, HE Taiping. CT application in early left ventricular function assessment and differential diagnosis: the crucial role of myocardial strain parameters in hypertrophic cardiomyopathy and hypertensive heart disease[J]. Journal of Molecular Imaging, 2024, 47(1): 7-13. doi: 10.12122/j.issn.1674-4500.2024.01.02

基于CT获得的心肌应变参数在肥厚型心肌病和高血压性心脏病中的应用

doi: 10.12122/j.issn.1674-4500.2024.01.02
基金项目: 

陕西省重点产业创新链项目 2021ZDLSF04-10

详细信息
    作者简介:

    何泽明,在读硕士研究生,技师,E-mail: 1601158676@qq.com

    通讯作者:

    贺太平,主任医师,E-mail: htp89956@163.com

CT application in early left ventricular function assessment and differential diagnosis: the crucial role of myocardial strain parameters in hypertrophic cardiomyopathy and hypertensive heart disease

  • 摘要:   目的  探讨基于CT获得的心肌应变(MS)参数在评估肥厚型心肌病(HCM)和高血压性心脏病(HHD)早期左室功能的可行性,以及该参数区分这两种疾病的能力。  方法  本研究为回顾性研究,纳入2021年12月~2023年1月在空军军医大学西京医院接受心脏冠状动脉血管成像检查,结果呈阴性的205例成年受试者。依据各组纳入及排除标准将受试者分为HCM组(n=70)、HHD组(n=65)和健康对照组(n=70)。采用后处理软件对3组的左室形态学特征、传统心功能参数以及MS参数进行了量化,比较参数的差异,以及对这两种疾病的鉴别能力。  结果  相较于健康对照组,HCM与HHD组的左室壁最大厚度、左室质量指数均有不同程度增高(9.25±1.68 vs 15.32±1.67 vs 18.01±2.24;56.64±19.57 vs 86.90±12.31 vs 106.27±19.56,P < 0.001),而MS绝对值则均有不同程度降低(心肌整体周向应变,-25.80±3.74 vs -23.00±4.49 vs -21.03±4.97;心内膜下整体周向应变,-40.95±8.13 vs -35.86±7.90 vs -31.85±9.16;心肌整体径向应变,81.26±37.76 vs 66.99±18.37 vs 55.31±23.19,P < 0.001),其中以纵向应变降低最为显著(心肌整体纵向应变,-23.03±3.84 vs -19.86±2.22 vs -15.47±4.28;心内膜下整体纵向应变,-30.35±5.35 vs -25.01±3.62 vs -21.92±8.16,P < 0.001)。多元Logistic回归分析结果显示左室壁最大厚度、左室质量指数和心肌整体纵向应变组合模型的ROC曲线下面积最大,为0.930(敏感度为97%,特异性为83%)。  结论  基于CT所获得的MS参数可以用于精确评估HCM和HHD患者的早期左室功能损伤,其中以纵向应变的损伤最为显著。所得参数中左室壁最大厚度、左室质量指数和心肌整体纵向应变的组合模型在区分这两种疾病时效果最佳。

     

  • 图  1  左室的心内、外膜绘制

    Figure  1.  Drawing of endo-and epicardial contours in the basal short-axis view of the left ventricle (A) and in the two-chamber long-axis view of the left ventricle (B).

    图  2  左室心肌应变随时间变化曲线图

    Figure  2.  Time-dependent curve of left ventricular myocardial strain.

    图  3  多元Logistic回归模型的ROC曲线

    Figure  3.  ROC curve of the multivariate Logistic regression model.

    表  1  HCM、HHD与健康对照组基本资料及常规心功能参数对比

    Table  1.   Comparison of basic characteristics and conventional cardiac function parameters among HCM, HHD and healthy control groups (Mean±SD)

    Parameters HCM group
    (n=70)
    HHD group
    (n=65)
    Healthy control group
    (n=70)
    F2 P
    Clinical baseline data
          Gender (Male/Female, n) 50/20 c 39/26 44/26c 2.122 0.346
          Age (years) 51.54±11.74c 52.60±10.88 52.67±9.14c 0.245 0.783
          Height (m) 1.69±0.07c 1.66±0.76 1.67±0.71c 1.838 0.162
          Weight (kg) 74.10±12.46c 71.06±12.00 71.68±9.94c 1.333 0.266
          BSA (m2) 1.82±0.19c 1.77±0.19 1.78±0.16c 1.772 0.173
          BMI (kg/m2) 25.98±3.51c 25.30±3.45 25.63±2.75c 0.759 0.469
          Systolic blood pressure (mmHg) 114.79±13.14a 148.48±10.87 112.26±12.69a 179.887 < 0.001
          Diastolic blood pressure (mmHg) 75.09±7.60a 92.86±6.09 77.01±8.56a 112.205 < 0.001
    Traditional cardiac function parameters
          MLVWT(mm) 18.01±2.24a 15.32±1.66 9.26±1.68a 396.108 < 0.001
          LVMI(g/m2 106.27±19.56a 86.90±12.31 56.64±19.57a 141.392 < 0.001
          LVEF(%) 75.39±8.08a 70.22±7.67 70.02±7.67c 9.478 < 0.001
          LVESV(mL) 36.18±12.70c 39.26±17.40 39.31±26.50c 0.570 0.567
          LVEDV(mL) 149.88±34.94b 129.66±34.30 125.87±56.72c 6.135 < 0.05
          LVESL(cm) 6.87±0.97a 5.98±1.09 5.87±0.80c 22.780 < 0.001
          LVESD(cm) 3.55±0.45a 3.87±0.53 3.78±0.62c 6.582 < 0.05
          LVEDL(cm) 8.46±0.89a 7.64±0.86 7.60±1.01c 18.935 < 0.001
          LVEDD(cm) 4.17±0.54a 4.60±0.50 4.76±0.96c 13.251 < 0.001
    aP < 0.001 vs HHD group; bP < 0.05 vs HHD group; cP > 0.05 vs HHD group. BSA: Body surface area; BMI: Body mass index; MLVWT: Maximal left ventricular wall thickness; LVMI: Left ventricular mass index; LVEF: Left ventricular ejection fraction; LVESV: Left ventricular end-systolic volume; LVEDV: Left ventricular end-diastolic volume; LVESL: Left ventricular end-systolic length; LVESD: Left ventricular end-systolic diameter; LVEDL: Left ventricular end-diastolic length; LVEDD: Left ventricular end-diastolic diameter.
    下载: 导出CSV

    表  2  HCM、HHD与健康对照组心肌应变参数对比

    Table  2.   Comparison of myocardial strain parameters among HCM, HHD and healthy control group (%, Mean±SD)

    Parameters HCM group(n=70) HHD group(n=65) Healthy control group (n=70) χ2 P
    MyoGCS -21.03±4.97a -23.00±4.49 -25.80±3.74a 20.528 < 0.001
    EndoGCS -31.85±9.16a -35.86±7.89 -40.95±8.13a 20.519 < 0.001
    GRS 55.31±23.19a 66.99±18.37 81.26±37.76a 15.212 < 0.001
    MyoGLS -15.47±4.28a -19.86±2.22 -23.02±3.84a 78.491 < 0.001
    EndoGLS -21.92±8.16a -25.01±3.62 -30.45±5.35a 34.575 < 0.001
    aP < 0.001 vs HHD group; MyoGLS: Myocardial global longitudinal strain; EndoGLS:Endocardial global longitudinal strain; MyoGCS: Myocardial global circumferential strain;EndoGCS: Endocardial global circumferential strain; GRS: Global radial strain.
    下载: 导出CSV

    表  3  左室参数鉴别HCM和HHD患者的ROC结果

    Table  3.   ROC results of left ventricular parameters for discriminating HCM and HHD patients

    Parameters AUC Cut-off Sensitivity(%) Specificity(%) P
    Left ventricular morphological parameters
          MLVWT 0.825 16.65 76 82 < 0.001
          LVMI 0.803 98.99 67 83 < 0.001
          LVESL 0.776 6.66 67 85 < 0.001
          LVESD 0.745 3.66 63 66 < 0.001
          LVEDL 0.680 8.37 56 83 < 0.001
          LVEDD 0.725 4.24 60 79 < 0.001
    Left ventricular functional parameters
          LVEF 0.676 73.83 64 65 < 0.001
          LVEDV 0.686 136.24 74 63 < 0.001
          MyoGCS 0.621 -24.79 77 45 < 0.001
          EndoGCS 0.632 -29.59 50 83 < 0.001
          GRS 0.664 59.35 61 68 < 0.001
          MyoGLS 0.847 -16.54 64 94 < 0.001
          EndoGLS 0.695 -20.74 49 95 < 0.001
    下载: 导出CSV

    表  4  CT-FT参数的多元Logistic回归分析在鉴别HCM和HHD中的作用

    Table  4.   Multivariate Logistic regression analysis of CT-FT parameters in discriminating HCM and HHD

    Parameters Wald OR (95% CI) P AUC Sensitivity(%) Specificity(%)
    MLVWT 12.901 0.533(0.378-0.751) < 0.001 0.930 97 83
    LVMI 10.085 0.933(0.894-0.974) 0.014
    MyoGLS 20.107 0.651(0.539-0.785) < 0.001
    下载: 导出CSV

    表  5  MLVWT与MS参数的可重复性

    Table  5.   Reproducibility of MLVWT and MS parameters

    Parameters Intra-observer variability Inter-observer variability
    ICC(95% CI P ICC(95% CI P
    MLVWT 0.970(0.884-0.993) < 0.001 0.942(0.793-0.985) < 0.001
    MyoGCS 0.922(0.699-0.989) < 0.001 0.828(0.522-0.949) < 0.001
    EndoGCS 0.933(0.771-0.973) < 0.001 0.875(0.602-0.957) < 0.001
    GRS 0.794(0.636-0.907) < 0.001 0.711(0.585-0.883) < 0.001
    MyoGLS 0.984(0.958-0.998) < 0.001 0.969(0.921-0.991) < 0.001
    EndoGLS 0.956(0.856-0.982) < 0.001 0.914(0.752-0.977) < 0.001
    下载: 导出CSV
  • [1] Maron BJ, Desai MY, Nishimura RA, et al. Diagnosis and evaluation of HypertrophicCardiomyopathy[J]. J Am Coll Cardiol, 2022, 79(4): 372-89. doi: 10.1016/j.jacc.2021.12.002
    [2] Yang LP, Zhang LB, Cao SD, et al. Advanced myocardial characterization in hypertrophic cardiomyopathy: feasibility of CMR-based feature tracking strain analysis in a case-control study[J]. Eur Radiol, 2020, 30(11): 6118-28. doi: 10.1007/s00330-020-06922-6
    [3] Ismail TF, Frey S, Kaufmann BA, et al. Hypertensive heart disease the imaging perspective[J]. J Clin Med, 2023, 12(9): 3122. doi: 10.3390/jcm12093122
    [4] Nwabuo CC, Vasan RS. Pathophysiology of hypertensive heart disease: beyond left ventricular hypertrophy[J]. Curr Hypertens Rep, 2020, 22(2): 1-18.
    [5] Kato T, Noda A, Izawa H, et al. Discrimination of nonobstructive hypertrophic cardiomyopathy from hypertensive left ventricular hypertrophy based on strain rate imaging by tissue Doppler ultrasonography[J]. J Card Fail, 2005, 11(9): S284.
    [6] Hanatani S, Izumiya Y, Takashio S, et al. Growth differentiation factor 15 can distinguish between hypertrophic cardiomyopathy and hypertensive hearts[J]. Heart Vessels, 2014, 29(2): 231-7. doi: 10.1007/s00380-013-0337-y
    [7] Ommen SR, Mital S, Burke MA, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American college of cardiology/american heart association joint committee on clinical practice guidelines[J]. Circulation, 2020, 142(25): e558-e631.
    [8] Li N, Liu T, Liu JA, et al. Quantifying myocardial strain of the left ventricle in normal people using feature-tracking based on computed tomography imaging[J]. Diagnostics, 2022, 12(2): 329. doi: 10.3390/diagnostics12020329
    [9] Miskinyte E, Bucius P, Erley J, et al. Assessment of global longitudinal and circumferential strain using computed tomography feature tracking: intra-individual comparison with CMR feature tracking and myocardial tagging in patients with severe aortic Stenosis[J]. J Clin Med, 2019, 8(9): 1423. doi: 10.3390/jcm8091423
    [10] Xie WH, Chen LJ, Hu LW, et al. Postoperative evaluation of left ventricular global strain using cardiac computed tomography in pediatric patients with congenital heart disease: a comparison with echocardiography[J]. Eur J Radiol, 2021, 142: 109868. doi: 10.1016/j.ejrad.2021.109868
    [11] Karaca Özer P, Ayduk Gövdeli E, Engin B, et al. Role of global longitudinal strain in discriminating variant forms of left ventricular hypertrophy and predicting mortality[J]. Anatol J Cardiol, 2021, 25(12): 863-71. doi: 10.5152/AnatolJCardiol.2021.21940
    [12] la Rosa Angelo D, Maulin S, Takahiro S, et al. Comparing echocardiographic characteristics in genotype positive-phenotype positive hypertrophic cardiomyopathy and hypertensive left ventricular hypertrophy[J]. Eur Heart J Cardiovasc Imag, 2021, 23(3): 340-8.
    [13] Cikes M, Solomon SD. Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure[J]. Eur Heart J, 2016, 37(21): 1642-50. doi: 10.1093/eurheartj/ehv510
    [14] Romano S, Judd RM, Kim RJ, et al. Feature-tracking global longitudinal strain predicts mortality in patients with preserved ejection fraction[J]. JACC, 2020, 13(4): 940-7.
    [15] Sun J, Xu TY, Ni XD, et al. Echocardiographic strain in hypertrophic cardiomyopathy and hypertensive left ventricular hypertrophy[J]. Echocardiography, 2018, 36(2): 257-65.
    [16] 范泽政, 王静, 杨帆, 等. 三维斑点追踪技术在鉴别心脏淀粉样变与肥厚型心肌病和高血压心脏病中的应用[J]. 中国超声医学杂志, 2019, 35(7): 604-7.
    [17] Claus P, Omar AMS, Pedrizzetti G, et al. Tissue tracking technology for assessing cardiac mechanics[J]. JACC, 2015, 8(12): 1444-60.
    [18] 王姿, 冯泽豪, 武睿, 等. 不同类型心肌肥厚的心肌应变特征[J]. 中国医学影像学杂志, 2018, 26(5): 336-40, 346.
    [19] Neisius U, Myerson L, Fahmy AS, et al. Cardiovascular magnetic resonance feature tracking strain analysis for discrimination between hypertensive heart disease and hypertrophic cardiomyopathy[J]. PLoS One, 2019, 14(8): e0221061. doi: 10.1371/journal.pone.0221061
    [20] Liu SL, Li YL, Zhao YM, et al. The combination of feature tracking and late gadolinium enhancement for identification between hypertrophic cardiomyopathy and hypertensive heart disease[J]. Front Cardiovasc Med, 2022, 9: 865615. doi: 10.3389/fcvm.2022.865615
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  76
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-24
  • 网络出版日期:  2024-01-23
  • 刊出日期:  2024-01-20

目录

    /

    返回文章
    返回