Progress in improving tumor microenvironment by photodynamic therapy and improving immunotherapy efficacy for hepatocellular carcinoma
-
摘要: 肝癌是严重威胁着我国人民的生命和健康的重大疾病,免疫治疗被证明是一种有望帮助治疗肝癌的新手段,但临床上仅有15%~20%的肝癌患者对其有响应。光动力治疗通过激活免疫细胞、诱导细胞凋亡、抑制炎症等作用,在进行肝癌治疗的同时,改善肿瘤微环境以提高肝癌免疫治疗的疗效。本文通过对光动力治疗在肝癌治疗、肿瘤微环境作用机制及其联合免疫治疗肝癌的研究现状作一综述,旨在为临床上肝癌的综合治疗提供新的思路及方向。Abstract: Hepatocellular carcinoma (HCC) is a serious disease threatening the life and health of Chinese. Immunotherapy has been proved to be a promising new method for the treatment of HCC, but only 15%-20% of patients respond to it clinically. Through activating immune cells, inducing apoptosis and inhibiting inflammation, photodynamic therapy can improve the tumor microenvironment to improve the efficacy of HCC immunotherapy. This article reviews the current research status of photodynamic therapy in the treatment of HCC, the mechanism of action on tumor microenvironment and the combined immunotherapy for HCC, aiming to provide new ideas and directions for the clinical comprehensive treatment of HCC.
-
Key words:
- hepatocellular carcinoma /
- photodynamic therapy /
- tumor microenvironment /
- immunotherapy /
- progress
-
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-49. doi: 10.3322/caac.21660 [2] Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604. doi: 10.1038/s41575-019-0186-y [3] Zhou MZ, Liu BR, Shen J. Immunotherapy for hepatocellular carcinoma[J]. Clin Exp Med, 2023, 23(3): 569-77. [4] Sangro B, Sarobe P, Hervás-Stubbs S, et al. Advances in immunotherapy for hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(8): 525-43. doi: 10.1038/s41575-021-00438-0 [5] Hu HY, Qi S, Zeng SL, et al. Importance of microvascular invasion risk and tumor size on recurrence and survival of hepatocellular carcinoma after anatomical resection and non-anatomical resection [J]. Front Oncol, 2021, 11: 621622. doi: 10.3389/fonc.2021.621622 [6] Xiong YL, Cao P, Lei XH, et al. Accurate prediction of microvascular invasion occurrence and effective prognostic estimation for patients with hepatocellular carcinoma after radical surgical treatment [J]. World J Surg Onc, 2022, 20(1): 328. doi: 10.1186/s12957-022-02792-y [7] Li SS, Gu K, Wang H, et al. Degradable holey palladium nanosheets with highly active 1D nanoholes for synergetic phototherapy of hypoxic tumors[J]. J Am Chem Soc, 2020, 142(12): 5649-56. doi: 10.1021/jacs.9b12929 [8] 甄秀梅, 黄力毅. 光动力疗法治疗原发性肝癌的进展及机制研究[J]. 消化肿瘤杂志: 电子版, 2022, 14(1): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-XHZL202201002.htm [9] Xie ZJ, Fan TJ, An J, et al. Emerging combination strategies with phototherapy in cancer nanomedicine[J]. Chem Soc Rev, 2020, 49 (22): 8065-87. doi: 10.1039/D0CS00215A [10] Fu QR, Zhu R, Song JB, et al. Photoacoustic imaging: contrast agents and their biomedical applications[J]. Adv Mater, 2018: 1805875. [11] 谷长维, 张玲, 谷鸣. 新型光敏剂BF01光动力治疗人肝癌机制初步研究[J]. 药学学报, 2019, 54(12): 2251-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXB201912018.htm [12] 卫怡蓉, 彭鹏, 杨海昆, 等. 光动力疗法在不可切除肝外胆管癌的研究进展[J]. 现代消化及介入诊疗, 2021, 26(1): 143-5, 148. https://www.cnki.com.cn/Article/CJFDTOTAL-XDXH202101030.htm [13] 张松, 徐维田, 王海萍. 光动力疗法在消化道肿瘤综合治疗中的研究进展[J]. 华南国防医学杂志, 2021, 35(11): 845-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HNGY202111019.htm [14] Sahu A, Kose K, Kraehenbuehl L, et al. In vivo tumor immune microenvironment phenotypes correlate with inflammation and vasculature to predict immunotherapy response[J]. Nat Commun, 2022, 13: 5312. doi: 10.1038/s41467-022-32738-7 [15] Lim CJ, Lee YH, Pan L, et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma[J]. Gut, 2019, 68(5): 916-27. doi: 10.1136/gutjnl-2018-316510 [16] van Straten D, Mashayekhi V, de Bruijn HS, et al. Oncologic photodynamic therapy: basic principles, current clinical status and future directions[J]. Cancers, 2017, 9(2): 19. [17] Qi S, Liu GY, Chen JB, et al. Targeted multifunctional nanoplatform for imaging- guided precision diagnosis and photothermal/ photodynamic therapy of orthotopic hepatocellular carcinoma[J]. Int J Nanomed, 2022, 17: 3777-92. doi: 10.2147/IJN.S377080 [18] Zhu YH, Lin XR, Zhou XJ, et al. Posttranslational control of lipogenesis in the tumor microenvironment[J]. J Hematol Oncol, 2022, 15(1): 120. doi: 10.1186/s13045-022-01340-1 [19] Donne R, Lujambio A. The liver cancer immune microenvironment: therapeutic implications for hepatocellular carcinoma[J]. Hepatology, 2023, 77(5): 1773-96. doi: 10.1002/hep.32740 [20] Alzeibak R, Mishchenko TA, Shilyagina NY, et al. Targeting immunogenic cancer cell death by photodynamic therapy: past, present and future[J]. J Immunother Cancer, 2021, 9(1): e001926. doi: 10.1136/jitc-2020-001926 [21] Feng LL, Xie R, Wang CQ, et al. Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation[J]. ACS Nano, 2018, 12(11): 11000-12. doi: 10.1021/acsnano.8b05042 [22] Zhao L, Rao X, Zheng R, et al. Targeting glutamine metabolism with photodynamic immunotherapy for metastatic tumor eradication[J]. J Control Release, 2023, 357: 460-71. doi: 10.1016/j.jconrel.2023.04.027 [23] Toor D, Wsson MK, Kumar P, et al. Dysbiosis disrupts gut immune homeostasis and promotes gastric diseases[J]. Int J Mol Sci, 2019, 20(10): 2432. doi: 10.3390/ijms20102432 [24] Duan M, Goswami S, Shi JY, et al. Activated and exhausted MAIT cells foster disease progression and indicate poor outcome in hepatocellular carcinoma[J]. Clin Cancer Res, 2019, 25(11): 3304-16. doi: 10.1158/1078-0432.CCR-18-3040 [25] Jung NC, Kim HJ, Kang MS, et al. Photodynamic therapy-mediated DC immunotherapy is highly effective for the inhibition of established solid tumors[J]. Cancer Lett, 2012, 324(1): 58-65. doi: 10.1016/j.canlet.2012.04.024 [26] Garg AD, Dudek AM, Agostinis P. Autophagy-dependent suppression of cancer immunogenicity and effector mechanisms of innate and adaptive immunity[J]. Oncoimmunology, 2013, 2(10): e26260. doi: 10.4161/onci.26260 [27] Yeoh KW, Prawira A, Saad MZB, et al. Vinorelbine augments radiotherapy in hepatocellular carcinoma[J]. Cancers, 2020, 12(4): 872. doi: 10.3390/cancers12040872 [28] Haas AN, Furlaneto F, Gaio EJ, et al. New tendencies in non-surgical periodontal therapy[J]. Braz Oral Res, 2021, 35(suppl 2): e95. [29] Zhou TJ, Liang XL, Wang PF, et al. A hepatocellular carcinoma targeting nanostrategy with hypoxia- ameliorating and photothermal abilities that, combined with immunotherapy, inhibits metastasis and recurrence[J]. ACS Nano, 2020, 14(10): 12679-96. doi: 10.1021/acsnano.0c01453 [30] Jahanban-Esfahlan R, de la Guardia M, Ahmadi D, et al. Modulating tumor hypoxia by nanomedicine for effective cancer therapy [J]. J Cell Physiol, 2018, 233(3): 2019-31. doi: 10.1002/jcp.25859 [31] Cheng AL, Hsu C, Chan SL, et al. Challenges of combination therapy with immune checkpoint inhibitors for hepatocellular carcinoma[J]. J Hepatol, 2020, 72(2): 307-19. doi: 10.1016/j.jhep.2019.09.025 [32] Pinter M, Jain RK, Duda DG. The Current landscape of immune checkpoint blockade in hepatocellular carcinoma: a review[J]. JAMA Oncol, 2021, 7(1): 113-23. [33] Zhou ZG, Liu Y, Song W, et al. Metabolic reprogramming mediated PD-L1 depression and hypoxia reversion to reactivate tumor therapy[J]. J Control Release, 2022, 352: 793-812. [34] Minami Y, Nishida N, Kudo M. Radiofrequency ablation of liver metastasis: potential impact on immune checkpoint inhibitor therapy[J]. Eur Radiol, 2019, 29(9): 5045-51. [35] Li K, Yu H, Bao Z, et al. Combination of photosensitizer and immune checkpoint inhibitors for improving the efficacy of tumor immunotherapy[J]. Int J Pharm, 2022, 629: 122384. [36] Llovet JM, De Baere T, Kulik L, et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(5): 293-313. [37] Cheng HW, Fan XS, Ye EY, et al. Dual tumor microenvironment remodeling by glucose- contained radical copolymer for MRIguided photoimmunotherapy[J]. Adv Mater, 2022, 34(25): e2107674. [38] Xu JJ, Zheng Q, Cheng X, et al. Chemo- photodynamic therapy with light-triggered disassembly of theranostic nanoplatform in combination with checkpoint blockade for immunotherapy of hepatocellular carcinoma[J]. J Nanobiotechnology, 2021, 19(1): 355. [39] Hao Y, Gu ZL, Yu ZF, et al. Photodynamic therapy in combination with the hepatitis B core virus-like particles (HBc VLPs) to prime anticancer immunity for colorectal cancer treatment[J]. Cancers, 2022, 14(11): 2724. [40] Zhang C, Wang XJ, Liu GQ, et al. CRISPR/Cas9 and chlorophyll coordination micelles for cancer treatment by genome editing and photodynamic therapy[J]. Small, 2023, 19(17): e2206981. [41] Li LQ, Shao C, Liu T, et al. An NIR-Ⅱ-emissive photosensitizer for hypoxia- tolerant photodynamic theranostics[J]. Adv Mater, 2020, 32(45): 2003471. [42] Xiao QC, Lin HR, Wu J, et al. Pyridine-embedded phenothiazinium dyes as lysosome-targeted photosensitizers for highly efficient photodynamic antitumor therapy[J]. J Med Chem, 2020, 63(9): 4896-907.
点击查看大图
计量
- 文章访问数: 246
- HTML全文浏览量: 193
- PDF下载量: 20
- 被引次数: 0