留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

光动力治疗改善肿瘤微环境和提高肝癌免疫治疗疗效的研究进展

齐硕 吴凡 邱俊 匡欣 邓三林 丁成明 陈国栋

齐硕, 吴凡, 邱俊, 匡欣, 邓三林, 丁成明, 陈国栋. 光动力治疗改善肿瘤微环境和提高肝癌免疫治疗疗效的研究进展[J]. 分子影像学杂志, 2023, 46(5): 938-941. doi: 10.12122/j.issn.1674-4500.2023.05.30
引用本文: 齐硕, 吴凡, 邱俊, 匡欣, 邓三林, 丁成明, 陈国栋. 光动力治疗改善肿瘤微环境和提高肝癌免疫治疗疗效的研究进展[J]. 分子影像学杂志, 2023, 46(5): 938-941. doi: 10.12122/j.issn.1674-4500.2023.05.30
QI Shuo, WU Fan, QIU Jun, KUANG Xin, DENG Sanlin, DING Chengming, CHEN Guodong. Progress in improving tumor microenvironment by photodynamic therapy and improving immunotherapy efficacy for hepatocellular carcinoma[J]. Journal of Molecular Imaging, 2023, 46(5): 938-941. doi: 10.12122/j.issn.1674-4500.2023.05.30
Citation: QI Shuo, WU Fan, QIU Jun, KUANG Xin, DENG Sanlin, DING Chengming, CHEN Guodong. Progress in improving tumor microenvironment by photodynamic therapy and improving immunotherapy efficacy for hepatocellular carcinoma[J]. Journal of Molecular Imaging, 2023, 46(5): 938-941. doi: 10.12122/j.issn.1674-4500.2023.05.30

光动力治疗改善肿瘤微环境和提高肝癌免疫治疗疗效的研究进展

doi: 10.12122/j.issn.1674-4500.2023.05.30
基金项目: 

湖南省自然科学基金项目 2022JJ40400

湖南省自然科学基金项目 2021JJ70039

湖南省教育厅科学研究-优秀青年项目 22B0421

湖南省卫生健康委员会科技计划项目 202204014556

湖南省教育厅科学研究-重点项目 21A0258

湖南省临床医疗技术创新引导项目 2020SK51817

详细信息
    作者简介:

    齐硕,博士,主治医师,E-mail: qishuo@usc.edu.cn

    通讯作者:

    陈国栋,博士,主任医师,副教授,E-mail: chenguodong@usc.edu.cn

Progress in improving tumor microenvironment by photodynamic therapy and improving immunotherapy efficacy for hepatocellular carcinoma

  • 摘要: 肝癌是严重威胁着我国人民的生命和健康的重大疾病,免疫治疗被证明是一种有望帮助治疗肝癌的新手段,但临床上仅有15%~20%的肝癌患者对其有响应。光动力治疗通过激活免疫细胞、诱导细胞凋亡、抑制炎症等作用,在进行肝癌治疗的同时,改善肿瘤微环境以提高肝癌免疫治疗的疗效。本文通过对光动力治疗在肝癌治疗、肿瘤微环境作用机制及其联合免疫治疗肝癌的研究现状作一综述,旨在为临床上肝癌的综合治疗提供新的思路及方向。

     

  • [1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-49. doi: 10.3322/caac.21660
    [2] Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604. doi: 10.1038/s41575-019-0186-y
    [3] Zhou MZ, Liu BR, Shen J. Immunotherapy for hepatocellular carcinoma[J]. Clin Exp Med, 2023, 23(3): 569-77.
    [4] Sangro B, Sarobe P, Hervás-Stubbs S, et al. Advances in immunotherapy for hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(8): 525-43. doi: 10.1038/s41575-021-00438-0
    [5] Hu HY, Qi S, Zeng SL, et al. Importance of microvascular invasion risk and tumor size on recurrence and survival of hepatocellular carcinoma after anatomical resection and non-anatomical resection [J]. Front Oncol, 2021, 11: 621622. doi: 10.3389/fonc.2021.621622
    [6] Xiong YL, Cao P, Lei XH, et al. Accurate prediction of microvascular invasion occurrence and effective prognostic estimation for patients with hepatocellular carcinoma after radical surgical treatment [J]. World J Surg Onc, 2022, 20(1): 328. doi: 10.1186/s12957-022-02792-y
    [7] Li SS, Gu K, Wang H, et al. Degradable holey palladium nanosheets with highly active 1D nanoholes for synergetic phototherapy of hypoxic tumors[J]. J Am Chem Soc, 2020, 142(12): 5649-56. doi: 10.1021/jacs.9b12929
    [8] 甄秀梅, 黄力毅. 光动力疗法治疗原发性肝癌的进展及机制研究[J]. 消化肿瘤杂志: 电子版, 2022, 14(1): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-XHZL202201002.htm
    [9] Xie ZJ, Fan TJ, An J, et al. Emerging combination strategies with phototherapy in cancer nanomedicine[J]. Chem Soc Rev, 2020, 49 (22): 8065-87. doi: 10.1039/D0CS00215A
    [10] Fu QR, Zhu R, Song JB, et al. Photoacoustic imaging: contrast agents and their biomedical applications[J]. Adv Mater, 2018: 1805875.
    [11] 谷长维, 张玲, 谷鸣. 新型光敏剂BF01光动力治疗人肝癌机制初步研究[J]. 药学学报, 2019, 54(12): 2251-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXB201912018.htm
    [12] 卫怡蓉, 彭鹏, 杨海昆, 等. 光动力疗法在不可切除肝外胆管癌的研究进展[J]. 现代消化及介入诊疗, 2021, 26(1): 143-5, 148. https://www.cnki.com.cn/Article/CJFDTOTAL-XDXH202101030.htm
    [13] 张松, 徐维田, 王海萍. 光动力疗法在消化道肿瘤综合治疗中的研究进展[J]. 华南国防医学杂志, 2021, 35(11): 845-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HNGY202111019.htm
    [14] Sahu A, Kose K, Kraehenbuehl L, et al. In vivo tumor immune microenvironment phenotypes correlate with inflammation and vasculature to predict immunotherapy response[J]. Nat Commun, 2022, 13: 5312. doi: 10.1038/s41467-022-32738-7
    [15] Lim CJ, Lee YH, Pan L, et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma[J]. Gut, 2019, 68(5): 916-27. doi: 10.1136/gutjnl-2018-316510
    [16] van Straten D, Mashayekhi V, de Bruijn HS, et al. Oncologic photodynamic therapy: basic principles, current clinical status and future directions[J]. Cancers, 2017, 9(2): 19.
    [17] Qi S, Liu GY, Chen JB, et al. Targeted multifunctional nanoplatform for imaging- guided precision diagnosis and photothermal/ photodynamic therapy of orthotopic hepatocellular carcinoma[J]. Int J Nanomed, 2022, 17: 3777-92. doi: 10.2147/IJN.S377080
    [18] Zhu YH, Lin XR, Zhou XJ, et al. Posttranslational control of lipogenesis in the tumor microenvironment[J]. J Hematol Oncol, 2022, 15(1): 120. doi: 10.1186/s13045-022-01340-1
    [19] Donne R, Lujambio A. The liver cancer immune microenvironment: therapeutic implications for hepatocellular carcinoma[J]. Hepatology, 2023, 77(5): 1773-96. doi: 10.1002/hep.32740
    [20] Alzeibak R, Mishchenko TA, Shilyagina NY, et al. Targeting immunogenic cancer cell death by photodynamic therapy: past, present and future[J]. J Immunother Cancer, 2021, 9(1): e001926. doi: 10.1136/jitc-2020-001926
    [21] Feng LL, Xie R, Wang CQ, et al. Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation[J]. ACS Nano, 2018, 12(11): 11000-12. doi: 10.1021/acsnano.8b05042
    [22] Zhao L, Rao X, Zheng R, et al. Targeting glutamine metabolism with photodynamic immunotherapy for metastatic tumor eradication[J]. J Control Release, 2023, 357: 460-71. doi: 10.1016/j.jconrel.2023.04.027
    [23] Toor D, Wsson MK, Kumar P, et al. Dysbiosis disrupts gut immune homeostasis and promotes gastric diseases[J]. Int J Mol Sci, 2019, 20(10): 2432. doi: 10.3390/ijms20102432
    [24] Duan M, Goswami S, Shi JY, et al. Activated and exhausted MAIT cells foster disease progression and indicate poor outcome in hepatocellular carcinoma[J]. Clin Cancer Res, 2019, 25(11): 3304-16. doi: 10.1158/1078-0432.CCR-18-3040
    [25] Jung NC, Kim HJ, Kang MS, et al. Photodynamic therapy-mediated DC immunotherapy is highly effective for the inhibition of established solid tumors[J]. Cancer Lett, 2012, 324(1): 58-65. doi: 10.1016/j.canlet.2012.04.024
    [26] Garg AD, Dudek AM, Agostinis P. Autophagy-dependent suppression of cancer immunogenicity and effector mechanisms of innate and adaptive immunity[J]. Oncoimmunology, 2013, 2(10): e26260. doi: 10.4161/onci.26260
    [27] Yeoh KW, Prawira A, Saad MZB, et al. Vinorelbine augments radiotherapy in hepatocellular carcinoma[J]. Cancers, 2020, 12(4): 872. doi: 10.3390/cancers12040872
    [28] Haas AN, Furlaneto F, Gaio EJ, et al. New tendencies in non-surgical periodontal therapy[J]. Braz Oral Res, 2021, 35(suppl 2): e95.
    [29] Zhou TJ, Liang XL, Wang PF, et al. A hepatocellular carcinoma targeting nanostrategy with hypoxia- ameliorating and photothermal abilities that, combined with immunotherapy, inhibits metastasis and recurrence[J]. ACS Nano, 2020, 14(10): 12679-96. doi: 10.1021/acsnano.0c01453
    [30] Jahanban-Esfahlan R, de la Guardia M, Ahmadi D, et al. Modulating tumor hypoxia by nanomedicine for effective cancer therapy [J]. J Cell Physiol, 2018, 233(3): 2019-31. doi: 10.1002/jcp.25859
    [31] Cheng AL, Hsu C, Chan SL, et al. Challenges of combination therapy with immune checkpoint inhibitors for hepatocellular carcinoma[J]. J Hepatol, 2020, 72(2): 307-19. doi: 10.1016/j.jhep.2019.09.025
    [32] Pinter M, Jain RK, Duda DG. The Current landscape of immune checkpoint blockade in hepatocellular carcinoma: a review[J]. JAMA Oncol, 2021, 7(1): 113-23.
    [33] Zhou ZG, Liu Y, Song W, et al. Metabolic reprogramming mediated PD-L1 depression and hypoxia reversion to reactivate tumor therapy[J]. J Control Release, 2022, 352: 793-812.
    [34] Minami Y, Nishida N, Kudo M. Radiofrequency ablation of liver metastasis: potential impact on immune checkpoint inhibitor therapy[J]. Eur Radiol, 2019, 29(9): 5045-51.
    [35] Li K, Yu H, Bao Z, et al. Combination of photosensitizer and immune checkpoint inhibitors for improving the efficacy of tumor immunotherapy[J]. Int J Pharm, 2022, 629: 122384.
    [36] Llovet JM, De Baere T, Kulik L, et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(5): 293-313.
    [37] Cheng HW, Fan XS, Ye EY, et al. Dual tumor microenvironment remodeling by glucose- contained radical copolymer for MRIguided photoimmunotherapy[J]. Adv Mater, 2022, 34(25): e2107674.
    [38] Xu JJ, Zheng Q, Cheng X, et al. Chemo- photodynamic therapy with light-triggered disassembly of theranostic nanoplatform in combination with checkpoint blockade for immunotherapy of hepatocellular carcinoma[J]. J Nanobiotechnology, 2021, 19(1): 355.
    [39] Hao Y, Gu ZL, Yu ZF, et al. Photodynamic therapy in combination with the hepatitis B core virus-like particles (HBc VLPs) to prime anticancer immunity for colorectal cancer treatment[J]. Cancers, 2022, 14(11): 2724.
    [40] Zhang C, Wang XJ, Liu GQ, et al. CRISPR/Cas9 and chlorophyll coordination micelles for cancer treatment by genome editing and photodynamic therapy[J]. Small, 2023, 19(17): e2206981.
    [41] Li LQ, Shao C, Liu T, et al. An NIR-Ⅱ-emissive photosensitizer for hypoxia- tolerant photodynamic theranostics[J]. Adv Mater, 2020, 32(45): 2003471.
    [42] Xiao QC, Lin HR, Wu J, et al. Pyridine-embedded phenothiazinium dyes as lysosome-targeted photosensitizers for highly efficient photodynamic antitumor therapy[J]. J Med Chem, 2020, 63(9): 4896-907.
  • 加载中
计量
  • 文章访问数:  129
  • HTML全文浏览量:  73
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-28
  • 网络出版日期:  2023-10-20
  • 刊出日期:  2023-09-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日