Advances in multimodal imaging of Alzheimer's disease based on machine learning and brain network
-
摘要: 阿尔茨海默病是发生在中老年人群体中的神经退行性疾病,以记忆障碍和认知能力下降为主要特征。目前大多数关于阿尔茨海默病的多模态影像研究主要集中在局部特定脑区,缺乏对全脑网络模式的深入探讨。本文针对基于机器学习和脑网络的阿尔茨海默病多模态影像研究进行概述。首先,介绍了阿尔茨海默病的定义以及机器学习技术在脑疾病影像研究中的局限性;其次,阐述了机器学习在脑网络预测中的通用流程,主要包括:特征提取、特征选择与特征降维、模型构建、模型评价;最后,依次介绍了机器学习在阿尔茨海默病的灰质结构脑网络、白质结构脑网络、静息态功能脑网络以及多模态融合脑网络的研究成果。通过对近年来研究成果的梳理,本文对该领域未来发展方向进行了以下三点展望:大样本多中心研究,具有可解释性的深度学习技术,建立纵向预测模型。Abstract: Alzheimer's disease is a neurodegenerative disease occurring in middle-aged and elderly people, characterized by memory impairment and cognitive decline. At present, most of the multimodal imaging studies on Alzheimer's disease mainly focus on local specific brain regions, and there is a lack of in-depth exploration of whole brain network patterns. This paper summarizes the research on multimodal imaging of Alzheimer's disease based on machine learning and brain network. First, it introduces the definition of Alzheimer's disease and the limitations of machine learning technology in brain disease imaging research. Secondly, the general process of machine learning in brain network prediction is described, including: feature extraction, feature selection and feature dimensionality reduction, model construction and model evaluation; Finally, the research results of machine learning in Alzheimer's disease brain network of gray matter structure, white matter structure, resting-state functional brain network and multimodal fusion brain network are introduced in turn. By combing the research results in recent years, this paper has made the following three prospects for the future development direction of this field: large sample multi- center research, interpretable deep learning technology, and the establishment of longitudinal prediction models.
-
[1] Dai ZJ, He Y. Disrupted structural and functional brain connectomes in mild cognitive impairment and Alzheimer's disease[J]. Neurosci Bull, 2014, 30(2): 217-32. doi: 10.1007/s12264-013-1421-0 [2] Liu Y, Yu CS, Zhang XQ, et al. Impaired long distance functional connectivity and weighted network architecture in Alzheimer's disease[J]. Cereb Cortex, 2014, 24(6): 1422-35. doi: 10.1093/cercor/bhs410 [3] Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer's disease [J]. Lancet, 2021, 397(10284): 1577-90. doi: 10.1016/S0140-6736(20)32205-4 [4] 文宏伟, 陆菁菁, 何晖光. 机器学习在神经精神疾病诊断及预测中的应用[J]. 协和医学杂志, 2018, 9(1): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-XHYX201801008.htm [5] 张道强, 接标. 基于机器学习的脑网络分析方法及应用[J]. 数据采集与处理, 2015, 30(1): 68-76. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ201501006.htm [6] Sui J, Jiang RT, Bustillo J, et al. Neuroimaging- based individualized prediction of cognition and behavior for mental disorders and health: methods and promises[J]. Biol Psychiatry, 2020, 88(11): 818-28. doi: 10.1016/j.biopsych.2020.02.016 [7] Jiang RT, Woo CW, Qi SL, et al. Interpreting Brain Biomarkers: challenges and solutions in interpreting machine learning-based predictive neuroimaging[J]. IEEE Signal Process Mag, 2022, 39 (4): 107-18. doi: 10.1109/MSP.2022.3155951 [8] Beaty RE, Benedek M, Silvia PJ, et al. Creative cognition and brain network dynamics[J]. Trends Cogn Sci, 2016, 20(2): 87-95. doi: 10.1016/j.tics.2015.10.004 [9] 梁夏, 王金辉, 贺永. 人脑连接组研究: 脑结构网络和脑功能网络[J]. 科学通报, 2010, 55(16): 1565-83. [10] 赵若可, 赵智勇, 王金辉, 等. 人脑形态网络及其在脑发育研究中的应用[J]. 科学通报, 2023, 68(1): 72-86. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202301010.htm [11] Fan LZ, Li H, Zhuo JJ, et al. The human brainnetome atlas: a new brain atlas based on connectional architecture[J]. Cereb Cortex, 2016, 26(8): 3508-26. doi: 10.1093/cercor/bhw157 [12] Joliot M, Jobard G, Naveau M, et al. AICHA: an atlas of intrinsic connectivity of homotopic areas[J]. J Neurosci Methods, 2015, 254: 46-59. doi: 10.1016/j.jneumeth.2015.07.013 [13] Buckner RL, Krienen FM, Castellanos A, et al. The organization of the human cerebellum estimated by intrinsic functional connectivity [J]. J Neurophysiol, 2011, 106(5): 2322-45. doi: 10.1152/jn.00339.2011 [14] Seitzman BA, Gratton C, Marek S, et al. A set of functionallydefined brain regions with improved representation of the subcortex and cerebellum[J]. Neuroimage, 2020, 206: 116290. doi: 10.1016/j.neuroimage.2019.116290 [15] Wang JH, Wang XD, Xia MR, et al. GRETNA: a graph theoretical network analysis toolbox for imaging connectomics[J]. Front Hum Neurosci, 2015, 9: 386. [16] Cui ZX, Zhong SY, Xu PF, et al. PANDA: a pipeline toolbox for analyzing brain diffusion images[J]. Front Hum Neurosci, 2013, 7: 42. [17] MacKay MT, Chen J, Shapiro J, et al. Association of acute infarct topography with development of cerebral palsy and neurological impairment in neonates with stroke[J]. Neurology, 2023. doi: 10.1212/WNL.0000000000207705. [18] 赵宇, 黄思明, 陈锐. 特征选择与空间降维概述、热点及展望[J]. 数学的实践与认识, 2013, 43(15): 179-90. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201315018.htm [19] Breiman L. Bagging predictors[J]. Mach Lang, 1996, 24(2): 123-40. [20] Bartlett P, Freund Y, Lee WS, et al. Boosting the margin: a new explanation for the effectiveness of voting methods[J]. Ann Statist, 1998, 26(5): 1651-86. [21] Wen HW, Liu Y, Rekik I, et al. Multi- modal multiple kernel learning for accurate identification of Tourette syndrome children [J]. Pattern Recognit, 2017, 63: 601-11. doi: 10.1016/j.patcog.2016.09.039 [22] 江悠, 张道强, 张俊艺. 基于多图核的迁移学习方法[J]. 模式识别与人工智能, 2020, 33(6): 488-95. https://www.cnki.com.cn/Article/CJFDTOTAL-MSSB202006002.htm [23] He Y, Chen Z, Evans A. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease [J]. J Neurosci, 2008, 28(18): 4756-66. doi: 10.1523/JNEUROSCI.0141-08.2008 [24] Pichet Binette A, Gonneaud J, Vogel JW, et al. Morphometric network differences in ageing versus Alzheimer's disease dementia [J]. Brain, 2020, 143(2): 635-49. doi: 10.1093/brain/awz414 [25] 朱琳, 于海涛, 雷新宇, 等. 基于MRI图像的阿尔茨海默症患者脑网络特征识别算法[J]. 计算机应用, 2020, 40(8): 2455-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202008044.htm [26] 徐月华. 基于结构磁共振成像的阿尔兹海默症分类研究[D]. 成都: 电子科技大学, 2021. [27] Shao JM, Myers N, Yang QL, et al. Prediction of Alzheimer's disease using individual structural connectivity networks[J]. Neurobiol Aging, 2012, 33(12): 2756-65. doi: 10.1016/j.neurobiolaging.2012.01.017 [28] Prasad G, Joshi SH, Nir TM, et al. Brain connectivity and novel network measures for Alzheimer's disease classification[J]. Neurobiol Aging, 2015, 36(1): S121-31. [29] Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI [J]. Magn Reson Med, 1995, 34(4): 537-41. [30] Jin D, Wang P, Zalesky A, et al. Grab-AD: Generalizability and reproducibility of altered brain activity and diagnostic classification in Alzheimer's Disease[J]. Hum Brain Mapp, 2020, 41(12): 3379-91. [31] Chen PD, Yao HX, Tijms BM, et al. Four distinct subtypes of alzheimer's disease based on resting- state connectivity biomarkers [J]. Biol Psychiatry, 2023, 93(9): 759-69. [32] de Vos F, Koini M, Schouten TM, et al. A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer's disease[J]. Neuroimage, 2018, 167: 62-72. [33] 文格格. 基于多模态影像的阿尔茨海默病脑网络预测[D]. 上海: 东华大学, 2022. [34] 张格, 林岚, 康文杰, 等. 基于多模态影像特征的AD诊断研究[J]. 医疗卫生装备, 2021, 42(12): 1-6, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-YNWS202112001.htm [35] 朱奇晓. 基于功能脑网络与机器学习的阿尔茨海默症影像分析方法研究[D]. 济南: 山东大学, 2021. [36] Lu B, Li HX, Chang ZK, et al. A practical alzheimer disease classifier via brain imaging-based deep learning on 85, 721 samples: a multicentre, retrospective cohort study[J]. SSRN Journal, 2021, 13: 1-22. [37] Chen X, Lu B, Li HX, et al. The DIRECT consortium and the REST-meta-MDD project: towards neuroimaging biomarkers of major depressive disorder[J]. Psychoradiology, 2022, 2(1): 32-42. [38] Gong WK, Rolls ET, Du JN, et al. Brain structure is linked to the association between family environment and behavioral problems in children in the ABCD study[J]. Nat Commun, 2021, 12(1): 3769. [39] Kong XZ, Boedhoe PSW, Abe Y, et al. Mapping cortical and subcortical asymmetry in obsessive-compulsive disorder: findings from the ENIGMA consortium[J]. Biol Psychiatry, 2020, 87(12): 1022-34. [40] 钱程一, 王远军. 基于深度学习的阿尔兹海默症影像学分类研究进展[J]. 波谱学杂志, 2023, 40(2): 220-38. https://www.cnki.com.cn/Article/CJFDTOTAL-PPXZ202302010.htm [41] 陈园琼, 邹北骥, 张美华, 等. 医学影像处理的深度学习可解释性研究进展[J]. 浙江大学学报: 理学版, 2021, 48(1): 18-29, 40. https://www.cnki.com.cn/Article/CJFDTOTAL-HZDX202101003.htm [42] 黄丽冰. 深度学习模型的可解释性及其在医学影像分析应用中的研究进展[J]. 桂林航天工业学院学报, 2023, 28(1): 51-60. https://www.cnki.com.cn/Article/CJFDTOTAL-GLHT202301008.htm [43] Qi SL, Schumann G, Bustillo J, et al. Reward processing in novelty seekers: a transdiagnostic psychiatric imaging biomarker [J]. Biol Psychiatry, 2021, 90(8): 529-39. [44] Zhao K, Ding YH, Han Y, et al. Independent and reproducible hippocampal radiomic biomarkers for multisite Alzheimer's disease: diagnosis, longitudinal progress and biological basis[J]. Sci Bull (Beijing), 2020, 65(13): 1103-13.
点击查看大图
计量
- 文章访问数: 456
- HTML全文浏览量: 232
- PDF下载量: 73
- 被引次数: 0