Practical application of artificial intelligence in imaging medicine
-
摘要: 在医疗领域影像医学是人工智能的主要应用方向之一。在日常诊疗工作中,影像检查的临床需求量巨大,但影像科医师数量的增长和临床经验的积累远不及影像数据的增长速度,AI与影像数据交叉融合,可减轻影像科医师处理海量影像数据的压力。目前,基于超声、X线、CT和MRI数据以深度学习技术为核心,已研发了多种AI辅助影像的定量分析算法,在临床得到广泛的应用,实现了疾病的早期诊断、精准治疗、疗效评估和预测,显著提高影像科医师处理影像信息的效率和准确性,可为临床诊疗提供定量依据。Abstract: Imaging medicine is one of the main application directions of artificial intelligence in the medical field. In daily diagnosis and treatment work, the clinical demand for imaging examination is huge, but the growth of the number of imaging physicians and the accumulation of clinical experience is far from the growth rate of imaging data. The cross fusion of artificial intelligence and imaging data can reduce the pressure of imaging physicians to process massive image data. At present, based on deep learning technology and ultrasound, X-ray, CT and MRI data, various artificial intelligence assisted imaging quantitative analysis algorithms have been developed and widely applied in clinical practice, achieving early diagnosis, precise treatment, efficacy evaluation, and prediction of diseases, significantly improving the efficiency and accuracy of imaging physicians in processing image information, and providing quantitative basis for clinical diagnosis and treatment.
-
Key words:
- artificial intelligence /
- deep learning /
- imaging medicine /
- clinical application
-
[1] 中国电子技术标准化研究院. 人工智能标准化白皮书2018版[R]. 北京: 中国电子技术标准化研究院, 2018. [2] 国家发展改革委. 促进健康产业高质量发展行动纲要(2019-2022年) [EB/OL]. [2021-08-10]. [3] 李晓理, 张博, 王康, 等. 人工智能的发展及应用[J]. 北京工业大学学报, 2020, 46(6): 583-90 https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202006006.htm [4] 王海星, 田雪晴, 游茂, 等. 人工智能在医疗领域应用现状、问题及建议[J]. 卫生软科学, 2018, 32(5): 3-5,9. doi: 10.3969/j.issn.1003-2800.2018.05.001 [5] 金征宇. 人工智能医学影像应用: 现实与挑战[J]. 放射学实践, 2018, 33(10): 989-1. https://www.cnki.com.cn/Article/CJFDTOTAL-FSXS201810003.htm [6] 郑阳. 医疗人工智能的关键技术及应用[J]. 医学信息, 2021, 34(2): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXX202102007.htm [7] Haq IU, Haq I, Xu B. Artificial intelligence in personalized cardiovascular medicine and cardiovascular imaging[J]. Cardiovasc Diagn Ther, 2021, 11(3): 911-23. doi: 10.21037/cdt.2020.03.09 [8] 刘艳东, 程晓光, 于爱红. 基于深度学习的人工智能在肌骨影像中的研究进展[J]. 医学影像学杂志, 2022, 32(2): 339-41 https://www.cnki.com.cn/Article/CJFDTOTAL-XYXZ202202036.htm [9] Karanam S, Li R, Yang F, et al. Towards contactless patient positioning[J]. IEEE Trans Med Imaging, 2020, 39(8): 2701-10. doi: 10.1109/TMI.2020.2991954 [10] 陈磊, 刘爱娥, 詹翊强, 等. 人工智能赋能医疗影像全流程[J]. 人工智能, 2021(3): 28-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DKJS202103007.htm [11] Chandra SS, Bran Lorenzana M, Liu XW, et al. Deep learning in magnetic resonance image reconstruction[J]. J Med Imag Rad Onc, 2021, 65(5): 564-77. doi: 10.1111/1754-9485.13276 [12] 马骥, 吴蓉, 唐金华, 等. 人工智能在超声专业住院医师规范化培训中的应用前景探讨[J]. 中国继续医学教育, 2021, 13(36): 82-5 doi: 10.3969/j.issn.1674-9308.2021.36.022 [13] Liu T, Guo Q, Lian C, et al. Automated detection and classification of thyroid nodules in ultrasound images using clinical-knowledgeguided convolutional neural networks[J]. Med Image Anal, 2019, 58: 101555. doi: 10.1016/j.media.2019.101555 [14] So YK, Kim MJ, Kim S, et al. Lateral lymph node metastasis in papillary thyroid carcinoma: a systematic review and meta-analysis for prevalence, risk factors, and location[J]. Int J Surg, 2018, 50: 94-103. doi: 10.1016/j.ijsu.2017.12.029 [15] Hay ID. Papillary thyroid carcinoma[J]. Medicinaclinica, 1990, 132(8) : 675-6. [16] 刘凌晓, 董怡. 人工智能技术在甲状腺结节诊断及预测淋巴结转移中的应用[J]. 介入放射学杂志, 2021, 30(4): 323-6 https://www.cnki.com.cn/Article/CJFDTOTAL-JRFS202104001.htm [17] 刘亚男, 赵瑞峰. 人工智能在心血管影像中的应用进展[J]. 磁共振成像, 2021, 12(7): 114-6, 124. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC202107027.htm [18] Johnson KW, Torres Soto J, Glicksberg BS, et al. Artificial intelligence in cardiology[J]. J Am Coll Cardiol, 2018, 71(23): 2668-79. [19] Asch Federico M, Nicolas P, Theodore A, et al. Automated echocardiographic quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert[J]. Circ Cardiovasc Imaging, 2019, 12(9): e009303. [20] Cipmpi F, De Hoop B, Van Riel SJ, et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-ofthe-box[J]. Med Image Anal, 2015, 26(1): 195-202. [21] 施莉丽, 杨秀军, 于广军, 等. 基于医院RIS-PACS场景的人工智能骨龄检测系统集成技术与实现[J]. 中国医疗器械杂志, 2020, 44(5): 415-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYLZ202005009.htm [22] Sato Y, Takegami Y, Asamoto T, et al. Artificial intelligence improves the accuracy of residents in the diagnosis of hip fractures: a multicenter study[J]. BMC Musculoskelet Disord, 2021, 22(1): 407. [23] He Y, Pan I, Wu J, et al. Deep learning-based classification of primary bone tumors on radiographs: a preliminary studydeep learning-based classification of primary bone tumors on radiographs: a preliminary study[J]. SSRN Journal, 2020, 62: 103121. [24] Swiecicki A, Li N, O'Donnell J, et al. Deep learning- based algorithm for assessment of knee osteoarthritis severity in radiographs matches performance of radiologists[J]. Comput Biol Med, 2021, 133: 104334. [25] Kang Y, Choi D, Lee KJ, et al. Evaluating subscapularis tendon tears on axillary lateral radiographs using deep learning[J]. Eur Radiol, 2021, 31(12): 9408-17. [26] Ather S, Kadir T, Gleeson F. Artificial intelligence and radiomics in pulmonary nodule management: current status and future applications[J]. Clin Radiol, 2020, 75(1): 13-9. [27] Huang P, Park S, Yan RK, et al. Added value of computer- aided CT image features for early lung cancer diagnosis with small pulmonary nodules: a matched case- control study[J]. Radiology, 2018, 286(1): 286-95. [28] 钱桂生. 肺癌不同病理类型发病率的变化情况及其原因[J]. 中华肺部疾病杂志: 电子版, 2011, 4(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-ZFBD201101002.htm [29] Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2007[J]. CA A Cancer J Clin, 2007, 57(1): 43-66. [30] Pereira T, Freitas C, Costa JL, et al. Comprehensive perspective for lung cancer characterisation based on AI solutions using CT images [J]. J Clin Med, 2020, 10(1): 118. [31] Bai HX, Wang R, Xiong Z, et al. Artificial intelligence augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other origin at chest CT[J]. Radiology, 2021, 299(1): E225. [32] Kelei HA, Wei ZC, XIE XZ, et al. Synergistic learning of lung lobe segmentation and hierarchical multi-instance classification for automated severity assessment of COVID-19 in CT images[J]. Pattern Recognit, 2021, 113: 107828. [33] 王梅云. 磁共振成像人工智能的研究现状及发展前景[J]. 磁共振成像, 2023, 14(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC202303001.htm [34] 朱大龙, 易云山. 人工智能在医学影像中的MRI海马区分割算法研究综述[J]. 网络安全技术与应用, 2020(12): 47-9. https://www.cnki.com.cn/Article/CJFDTOTAL-WLAQ202012026.htm [35] Thyreau B, Sato K, Fukuda H, et al. Segmentation of the hippocampus by transferring algorithmic knowledge for large cohort processing[J]. Med Image Anal, 2018, 43: 214-28. [36] 黄京城, 刘金韵, 胡景卉, 等. 增强MRI影像组学对肝癌微血管侵犯的预测价值[J]. 放射学实践, 2022, 37(10)1243-1248 https://www.cnki.com.cn/Article/CJFDTOTAL-FSXS202210010.htm [37] 赵威强, 杨慕男, 杨俊强, 等. 人工智能在影像诊断方面的研究进展[J]. 中国社区医师, 2021, 37(3): 8-9. https://www.cnki.com.cn/Article/CJFDTOTAL-XCYS202103003.htm [38] Shah V, Turkbey B, Mani H, et al. Decision support system for localizing prostate cancer based on multiparametric magnetic resonance imaging[J]. Med Phys, 2012, 39(7Part1): 4093-103. [39] 刘书豪, 苏柯帆, 张宪祥, 等. 人工智能影像辅助诊断平台对直肠癌壁外血管侵犯识别多中心临床研究[J]. 中国实用外科杂志, 2019, 39 (10): 1081-4. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWK201910026.htm
点击查看大图
计量
- 文章访问数: 424
- HTML全文浏览量: 271
- PDF下载量: 55
- 被引次数: 0