留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

神经影像揭示重度抑郁症的神经回路和肠道微生物群的复杂相互作用

闻俊彦 唐佳渝 文戈

闻俊彦, 唐佳渝, 文戈. 神经影像揭示重度抑郁症的神经回路和肠道微生物群的复杂相互作用[J]. 分子影像学杂志, 2023, 46(3): 554-559. doi: 10.12122/j.issn.1674-4500.2023.03.31
引用本文: 闻俊彦, 唐佳渝, 文戈. 神经影像揭示重度抑郁症的神经回路和肠道微生物群的复杂相互作用[J]. 分子影像学杂志, 2023, 46(3): 554-559. doi: 10.12122/j.issn.1674-4500.2023.03.31
WEN Junyan, TANG Jiayu, WEN Ge. Neuroimaging reveals complex interplay of neural circuits and gut microbiota in major depressive disorder[J]. Journal of Molecular Imaging, 2023, 46(3): 554-559. doi: 10.12122/j.issn.1674-4500.2023.03.31
Citation: WEN Junyan, TANG Jiayu, WEN Ge. Neuroimaging reveals complex interplay of neural circuits and gut microbiota in major depressive disorder[J]. Journal of Molecular Imaging, 2023, 46(3): 554-559. doi: 10.12122/j.issn.1674-4500.2023.03.31

神经影像揭示重度抑郁症的神经回路和肠道微生物群的复杂相互作用

doi: 10.12122/j.issn.1674-4500.2023.03.31
基金项目: 

国家自然科学基金 82172012

国家重点研发计划 2022YFF1202600

广东省大学生创新训练计划 S202212121085

详细信息
    作者简介:

    闻俊彦,在读博士生,E-mail: wfdj1997@qq.com

    通讯作者:

    文戈,主任医师,博士生导师,E-mail: 1113470826@qq.com

Neuroimaging reveals complex interplay of neural circuits and gut microbiota in major depressive disorder

  • 摘要: 重度抑郁症是一类预后不佳的精神疾病,但它的发病机制尚未完全阐明。磁共振成像的发展为揭示其神经病理机制并明确其客观诊断依据奠定了基础,且越来越多的证据表明重度抑郁症与微生物群-肠-脑轴功能障碍之间存在密切关联。神经影像和测序技术的进步使得探索大脑、肠道和微生物组之间的相互作用变得越来越可行,针对神经影像和肠-脑相互作用的研究将为揭示抑郁症背后的病理机制以及构建针对抑郁症的肠道介导疗法提供一个更加精准的视角。本综述将对重度抑郁症的脑影像研究现状、肠道微生物与重度抑郁症的关系以及脑影像与肠-脑相互作用之间的研究进展进行归纳阐述。

     

  • [1] Cuijpers P, Stringaris A, Wolpert M. Treatment outcomes for depression: challenges and opportunities[J]. Lancet Psychiatry, 2020, 7(11): 925-7. doi: 10.1016/S2215-0366(20)30036-5
    [2] World health statistics 2022: monitoring health for the SDGs, sustainable development goals[M/OL]. Geneva: World Health Organization, 2022. https://www.who.int/publications-detailredirect/9789240051157.
    [3] Greenberg PE, Fournier AA, Sisitsky T, et al. The economic burden of adults with major depressive disorder in the United States (2010 and 2018)[J]. PharmacoEconomics, 2021, 39(6): 653-65. doi: 10.1007/s40273-021-01019-4
    [4] Jiang Y, Zou D, Li YM, et al. Monoamine neurotransmitters control basic emotions and affect major depressive disorders[J]. Pharmaceuticals (Basel), 2022, 15(10): 1203. doi: 10.3390/ph15101203
    [5] Nordentoft M, Mortensen PB, Pedersen CB. Absolute risk of suicide after first hospital contact in mental disorder[J]. Arch Gen Psychiatry, 2011, 68(10): 1058-64. doi: 10.1001/archgenpsychiatry.2011.113
    [6] 王舟, 卞茜, 王瑞文, 等. 初中生自杀风险的普遍性及针对性干预的效果[J]. 中国心理卫生杂志, 2020, 34(2): 117-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXWS202002008.htm
    [7] Siu A. Screening for depression in children and adolescents: us preventive services task force recommendation statement[J/OL]. J Am Med Assoc, 2022, 328(15): 1534-42.
    [8] Zhou XM, Jia SH. Suicidal communication signifies suicidal intent in Chinese completed suicides[J]. Soc Psychiatry Psychiatr Epidemiol, 2012, 47(11): 1845-54. doi: 10.1007/s00127-012-0488-7
    [9] Pompili M. Critical appraisal of major depression with suicidal ideation[J]. Ann Gen Psychiatry, 2019, 18(1): 1-5. doi: 10.1186/s12991-019-0224-8
    [10] Nauta WJ. Neural associations of the frontal cortex[J]. Acta Neurobiol Exp, 1972, 32(2): 125-40.
    [11] Gbyl K, Rostrup E, Raghava JM, et al. Cortical thickness following electroconvulsive therapy in patients with depression: a longitudinal MRI study[J]. Acta Psychiatr Scand, 2019, 140(3): 205-16. doi: 10.1111/acps.13068
    [12] 黎嘉雯, 王谨敏. 抑郁症脑影像的研究进展[J]. 中国现代医药杂志, 2022, 24(9): 100-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHTY202209024.htm
    [13] Xiao X, Zhao J, Li S. Task relevance driven adversarial learning for simultaneous detection, size grading, and quantification of hepatocellular carcinoma via integrating multi-modality MRI[J]. Med Image Anal, 2022, 81: 102554. doi: 10.1016/j.media.2022.102554
    [14] King JB, Lopez-Larson MP, Yurgelun-Todd DA. Mean cortical curvature reflects cytoarchitecture restructuring in mild traumatic brain injury[J]. Neuroimage Clin, 2016, 11: 81-9. doi: 10.1016/j.nicl.2016.01.003
    [15] Ronan L, Pienaar R, Williams G, et al. Intrinsic curvature: a marker of millimeter-scale tangential cortico-cortical connectivity?[J]. Int J Neur Syst, 2011, 21(5): 351-66. doi: 10.1142/S0129065711002948
    [16] Ronan L, Voets N, Rua C, et al. Differential tangential expansion as a mechanism for cortical gyrification[J]. Cereb Cortex, 2014, 24 (8): 2219-28. doi: 10.1093/cercor/bht082
    [17] Rettmann ME, Han X, Xu CY, et al. Automated sulcal segmentation using watersheds on the cortical surface[J]. NeuroImage, 2002, 15(2): 329-44. doi: 10.1006/nimg.2001.0975
    [18] Le Troter A, Auzias G, Coulon O. Automatic sulcal line extraction on cortical surfaces using geodesic path density maps[J]. NeuroImage, 2012, 61(4): 941-9. doi: 10.1016/j.neuroimage.2012.04.021
    [19] Takerkart S, Auzias G, Brun L, et al. Structural graph- based morphometry: a multiscale searchlight framework based on sulcal pits[J]. Med Image Anal, 2017, 35: 32-45. doi: 10.1016/j.media.2016.04.011
    [20] Lohmann G, von Cramon DY, Colchester ACF. Deep sulcal landmarks provide an organizing framework for human cortical folding[J]. Cereb Cortex, 2008, 18(6): 1415-20. doi: 10.1093/cercor/bhm174
    [21] Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis[J]. NeuroImage, 1999, 9(2): 179-94. doi: 10.1006/nimg.1998.0395
    [22] Gauthier CJ, Fan AP. BOLD signal physiology: models and applications[J]. NeuroImage, 2019, 187: 116-27. doi: 10.1016/j.neuroimage.2018.03.018
    [23] Poldrack RA, Baker CI, Durnez J, et al. Scanning the horizon: towards transparent and reproducible neuroimaging research[J]. Nat Rev Neurosci, 2017, 18(2): 115-26. doi: 10.1038/nrn.2016.167
    [24] Zou QH, Zhu CZ, Yang YH, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF[J]. J Neurosci Methods, 2008, 172(1): 137-41. doi: 10.1016/j.jneumeth.2008.04.012
    [25] Tomasi D, Wang GJ, Volkow ND. Energetic cost of brain functional connectivity[J]. Proc Natl Acad Sci USA, 2013, 110(33): 13642- 7. doi: 10.1073/pnas.1303346110
    [26] Zhang H, Bai X, Diaz MT. The intensity and connectivity of spontaneous brain activity in a language network relate to aging and language[J]. Neuropsychologia, 2021, 154: 107784. doi: 10.1016/j.neuropsychologia.2021.107784
    [27] Hong SB. Brain regional homogeneity and its association with age and intelligence in typically developing youth[J]. Asian J Psychiatry, 2023, 82: 103497. doi: 10.1016/j.ajp.2023.103497
    [28] Buch AM, Vértes PE, Seidlitz J, et al. Molecular and network-level mechanisms explaining individual differences in autism spectrum disorder[J]. Nat Neurosci, 2023, 26(4): 650-63. doi: 10.1038/s41593-023-01259-x
    [29] van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity[J]. Eur Neuropsychopharmacol, 2010, 20(8): 519-34. doi: 10.1016/j.euroneuro.2010.03.008
    [30] Uddin LQ, Yeo BTT, Spreng RN. Towards a universal taxonomy of macro- scale functional human brain networks[J]. Brain Topogr, 2019, 32(6): 926-42. doi: 10.1007/s10548-019-00744-6
    [31] Yeo BTT, Tandi J, Chee MWL. Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation[J]. NeuroImage, 2015, 111: 147-58. doi: 10.1016/j.neuroimage.2015.02.018
    [32] Williams LM. Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: a theoretical review of the evidence and future directions for clinical translation[J]. Depress Anxiety, 2017, 34(1): 9-24. doi: 10.1002/da.22556
    [33] Williams LM. Precision psychiatry: a neural circuit taxonomy for depression and anxiety[J]. Lancet Psychiatry, 2016, 3(5): 472-80. doi: 10.1016/S2215-0366(15)00579-9
    [34] Han KM, Ham BJ, Kim YK. Development of Neuroimaging-Based Biomarkers in Major Depression[M]. // Major Depressive Disorder. Singapore: Springer, 2021: 85-99.
    [35] Phillips ML, Chase HW, Sheline YI, et al. Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: neuroimaging approaches[J]. Am J Psychiatry, 2015, 172(2): 124-38. doi: 10.1176/appi.ajp.2014.14010076
    [36] Kim YK, Han KM. Neural substrates for late-life depression: a selective review of structural neuroimaging studies[J]. Prog Neuro Psychopharmacol Biol Psychiatry, 2021, 104: 110010. doi: 10.1016/j.pnpbp.2020.110010
    [37] Zhou HX, Chen X, Shen YQ, et al. Rumination and the default mode network: Meta-analysis of brain imaging studies and implications for depression[J]. NeuroImage, 2020, 206: 116287. doi: 10.1016/j.neuroimage.2019.116287
    [38] Sommer F, Bäckhed F. The gut microbiota-Masters of host development and physiology[J]. Nat Rev Microbiol, 2013, 11(4): 227-38. doi: 10.1038/nrmicro2974
    [39] Chaucheyras-Durand F, Sacy A, Karges K, et al. Gastro-intestinal microbiota in equines and its role in health and disease: the blackbox opens[J]. Microorganisms, 2022, 10(12): 2517. doi: 10.3390/microorganisms10122517
    [40] Zhao Z, Ning J, Bao XQ, et al. Fecal microbiota transplantation protects rotenone-induced Parkinson's disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis[JJ/OL]. Microbiome, 2021, 9(1): 226.
    [41] Bested AC, Logan AC, Selhub EM. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: part I-autointoxication revisited[J]. Gut Pathog, 2013, 5 (1): 1-16. doi: 10.1186/1757-4749-5-1
    [42] Maes M, Kubera M, Leunis JC, et al. Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut[J]. J Affect Disord, 2012, 141(1): 55-62. doi: 10.1016/j.jad.2012.02.023
    [43] Winter G, Hart RA, Charlesworth RPG, et al. Gut microbiome and depression: what we know and what we need to know[J]. Rev Neurosci, 2018, 29(6): 629-43. doi: 10.1515/revneuro-2017-0072
    [44] Zheng P, Yang J, Li YF, et al. Gut microbial signatures can discriminate unipolar from bipolar depression[J]. Adv Sci, 2020, 7 (7): 1902862. doi: 10.1002/advs.201902862
    [45] Aizawa E, Tsuji H, Asahara T, et al. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder[J]. J Affect Disord, 2016, 202: 254- 7. doi: 10.1016/j.jad.2016.05.038
    [46] Jiang HY, Ling ZX, Zhang YH, et al. Altered fecal microbiota composition in patients with major depressive disorder[J]. Brain Behav Immun, 2015, 48: 186-94. doi: 10.1016/j.bbi.2015.03.016
    [47] Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism[J]. Mol Psychiatry, 2016, 21(6): 786-96. doi: 10.1038/mp.2016.44
    [48] Naseribafrouei A, Hestad K, Avershina E, et al. Correlation between the human fecal microbiota and depression[J]. Neurogastroenterol Motil, 2014, 26(8): 1155-62. doi: 10.1111/nmo.12378
    [49] Yang J, Zheng P, Li YF, et al. Landscapes of bacterial and metabolic signatures and their interaction in major depressive disorders[J]. Sci Adv, 2020, 6(49): eaba8555. doi: 10.1126/sciadv.aba8555
    [50] Cryan JF, O'Riordan KJ, Cowan CSM, et al. The microbiota- gutbrain axis[J]. Physiol Rev, 2019, 99(4): 1877-2013. doi: 10.1152/physrev.00018.2018
    [51] Lai JB, Jiang JJ, Zhang PF, et al. Gut microbial clues to bipolar disorder: state-of-the-art review of current findings and future directions[J]. Clin Transl Med, 2020, 10(4): e146.
    [52] Iannone LF, Preda A, Blottière HM, et al. Microbiota-gut brain axis involvement in neuropsychiatric disorders[J]. Expert Rev Neurother, 2019, 19(10): 1037-50. doi: 10.1080/14737175.2019.1638763
    [53] Sherwin E, Sandhu KV, Dinan TG, et al. May the force be with You: the light and dark sides of the microbiota-gut-brain axis in neuropsychiatry[J]. CNS Drugs, 2016, 30(11): 1019-41. doi: 10.1007/s40263-016-0370-3
    [54] Nankova BB, Agarwal R, MacFabe DF, et al. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells: possible relevance to autism spectrum disorders[J]. PLoS One, 2014, 9(8): e103740. doi: 10.1371/journal.pone.0103740
    [55] Skonieczna-Żydecka K, Grochans E, Maciejewska D, et al. Faecal short chain fatty acids profile is changed in Polish depressive women[J]. Nutrients, 2018, 10(12): 1939. doi: 10.3390/nu10121939
    [56] Szczesniak O, Hestad KA, Hanssen JF, et al. Isovaleric acid in stool correlates with human depression[J]. Nutr Neurosci, 2016, 19 (7): 279-83. doi: 10.1179/1476830515Y.0000000007
    [57] Kelly JR, Borre Y, O' Brien C, et al. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat[J]. J Psychiatr Res, 2016, 82: 109-18. doi: 10.1016/j.jpsychires.2016.07.019
    [58] Moretti M, Valvassori SS, Varela RB, et al. Behavioral and neurochemical effects of sodium butyrate in an animal model of mania[J]. Behav Pharmacol, 2011, 22(8): 766-72. doi: 10.1097/FBP.0b013e32834d0f1b
    [59] Genedi M, Janmaat IE, Haarman BBCM, et al. Dysregulation of the gut-brain axis in schizophrenia and bipolar disorder[J]. Curr Opin Psychiatry, 2019, 32(3): 185-95. doi: 10.1097/YCO.0000000000000499
    [60] Zhao RL, Zhou YL, Shi HX, et al. Effect of gestational diabetes on postpartum depression-like behavior in rats and its mechanism[J]. Nutrients, 2022, 14(6): 1229. doi: 10.3390/nu14061229
    [61] Li JG, Jia XY, Wang C, et al. Altered gut metabolome contributes to depression-like behaviors in rats exposed to chronic unpredictable mild stress[J]. Transl Psychiatry, 2019, 9: 40. doi: 10.1038/s41398-019-0391-z
    [62] Inserra A, Rogers GB, Licinio J, et al. The microbiota inflammasome hypothesis of major depression[J]. BioEssays, 2018, 40(9): 1800027. doi: 10.1002/bies.201800027
    [63] Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration[J]. J Physiol, 2017, 595(2): 489-503. doi: 10.1113/JP273106
    [64] Sherwin E, Bordenstein S, Quinn J, et al. Microbiota and the social brain[J]. Science (New York), 2019, 366(6465): eaar2016. doi: 10.1126/science.aar2016
    [65] Johnson KVA, Foster KR. Why does the microbiome affect behaviour?[J]. Nat Rev Microbiol, 2018, 16(10): 647-55. doi: 10.1038/s41579-018-0014-3
    [66] Cryan JF, O'Riordan KJ, Sandhu K, et al. The gut microbiome in neurological disorders[J]. Lancet Neurol, 2020, 19(2): 179-94. doi: 10.1016/S1474-4422(19)30356-4
    [67] Ameringen M, Turna J, Patterson B, et al. The gut microbiome in psychiatry: a primer for clinicians[J]. Depress Anxiety, 2019, 36 (11): 1004-25. doi: 10.1002/da.22936
    [68] Mayer EA, Labus J, Aziz Q, et al. Role of brain imaging in disorders of brain-gut interaction: a Rome Working Team Report[J]. Gut, 2019, 68(9): 1701-15. doi: 10.1136/gutjnl-2019-318308
    [69] Curtis K, Stewart CJ, Robinson M, et al. Insular resting state functional connectivity is associated with gut microbiota diversity[J]. Eur J Neurosci, 2019, 50(3): 2446-52. doi: 10.1111/ejn.14305
    [70] Gao W, Salzwedel AP, Carlson AL, et al. Gut microbiome and brain functional connectivity in infants-a preliminary study focusing on the amygdala[J]. Psychopharmacology, 2019, 236(5): 1641- 51. doi: 10.1007/s00213-018-5161-8
    [71] Tillisch K, Mayer EA, Gupta A, et al. Brain structure and response to emotional stimuli as related to gut microbial profiles in healthy women[J]. Psychosom Med, 2017, 79(8): 905-13. doi: 10.1097/PSY.0000000000000493
    [72] Bagga D, Reichert JL, Koschutnig K, et al. Probiotics drive gut microbiome triggering emotional brain signatures[J]. Gut Microbes, 2018, 9(6): 486-96.
    [73] Li SJ, Song J, Ke PF, et al. The gut microbiome is associated with brain structure and function in schizophrenia[J]. Sci Rep, 2021, 11 (1): 9743. doi: 10.1038/s41598-021-89166-8
    [74] Li ZM, Lai JB, Zhang PF, et al. Multi-omics analyses of serum metabolome, gut microbiome and brain function reveal dysregulated microbiota-gut-brain axis in bipolar depression[J]. Mol Psychiatry, 2022, 27(10): 4123-35. doi: 10.1038/s41380-022-01569-9
  • 加载中
计量
  • 文章访问数:  118
  • HTML全文浏览量:  82
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-01
  • 网络出版日期:  2023-06-15
  • 刊出日期:  2023-05-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日