Application of photoacoustic imaging combined with photothermal therapy in the diagnosis and treatment of liver cancer
-
摘要: 近年来,具有高分辨率、高对比度和高成像深度的光声成像技术在肝癌的诊疗中逐渐受到重视,光热治疗因光热转导剂在肿瘤的富集而有着高度特异性,其优秀的疗效也备受关注。本文主要介绍光声成像技术和光热治疗的基本原理以及具有高光声信号和良好光热转换效率的纳米诊疗剂,并展示了光声成像技术联合光热治疗,以纳米诊疗剂的形式在肝癌诊疗一体化中的应用。联合技术利用光声成像来监测纳米诊疗剂在肿瘤的富集,并通过光热效应来杀伤肿瘤细胞、调节肿瘤微环境、抑制肿瘤的转移复发,验证了联合技术在早期肝癌诊治的可行性和优势,推动其在临床上的实际应用。Abstract: In recent years, photoacoustic imaging technology with high resolution, high contrast and high imaging depth has been paid more and more attention in the diagnosis and treatment of liver cancer. Photothermal therapy has also attracted more and more attention because of its high specificity and good therapeutic effect. This paper mainly introduces the basic principle of photoacoustic imaging technology and photothermal therapy, as well as nano- diagnostic agents with high photoacoustic signal and good photothermal conversion efficiency, and shows the application of photoacoustic imaging technology combined with photothermal therapy in the integration of diagnosis and treatment of liver cancer in the form of nano-diagnostic agents. Photoacoustic imaging is used to monitor the enrichment of nano-diagnostic agents in tumors, and laser irradiation is used to kill tumor cells, regulate tumor microenvironment and inhibit tumor metastasis and recurrence. The review describes the feasibility and advantages of combination technique in the diagnosis and treatment of hepatocellular carcinoma, and promote the practical application of combined technology clinically.
-
表 1 纳米材料在光声成像和光热治疗中的应用
Table 1. Application of nanomaterials in photoacoustic imaging and photothermal therapy
Material Example Material characteristics Disadvantages Photoacousti c imaging Photothermal therapy Precious metal nanomaterials Gold, silver, palladium Localized surface plasmon resonance effect and good biocompatibility Potentially cytotoxic and longterm exposure can cause deformation affecting imaging Chen, et al[9]Gao, et al[10] Alaaldin[11] Carbon Nanomaterials Monolayer carbon nanotubes, graphene Flexible synthesis and Functionalization modifications, and reduce cytotoxicity through functional group modifications Lower molar absorption coefficient than nanogold; broader absorption spectrum; Poor water solubility; difficult to aggregate in tumors. Yang, et al[12]Chen, et al[13] Liang, et al[14] Metallic and nonmetallic composite materials CuS, Iron oxide Synthesized easily, stable, low toxicity, and strong tumor cell killing ability Anisotropic dipole attraction and rapid biodegradation properties Ku, et al[15] Peng, et al[16] Organic dyes Indocyanine green, porphyrin Good biocompatibility and high photothermal conversion efficiency Poor photothermal stabilization, serious photobleaching Limited accumulation in tumors, rapid clearance in vivo Wang, et al[17] Kuo, et al[18] Organic polymer materials polydopamine, polypyrrole Good encapsulation ability, high drug loading, biodegradability Low absorption in the near infrared region Liu, et al[19] Liu, et al[20] -
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA A Cancer J Clin, 2021, 71(3): 209-49. doi: 10.3322/caac.21660 [2] Fan GH, Wei XY, Xu X. Is the era of sorafenib over? A review of the literature[J]. Ther Adv Med Oncol, 2020, 12: 1758835920927602. [3] Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021[J]. CAA Cancer J Clin, 2021, 71(1): 7-33. doi: 10.3322/caac.21654 [4] Lim EK, Kim T, Paik S, et al. Nanomaterials for theranostics: recent advances and future challenges[J]. Chem Rev, 2015, 115(1): 327- 94. doi: 10.1021/cr300213b [5] 王琳琳. 原位自组装纳米金诊疗剂的制备及光声引导光热治疗的研究[D]. 西安: 西安电子科技大学, 2019. [6] Liu YJ, Bhattarai P, Dai ZF, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chem Soc Rev, 2019, 48(7): 2053-108. doi: 10.1039/C8CS00618K [7] Beik J, Abed Z, Ghoreishi FS, et al. Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications[J]. J Control Release, 2016, 235: 205-21. doi: 10.1016/j.jconrel.2016.05.062 [8] 郑子良, 曲波涛, 杨晓荣, 等. 肿瘤靶向Pt-Cu基纳米平台用于近红外二区光声成像引导的光热治疗[J]. 无机化学学报, 2021, 37(11): 1991-2001. doi: 10.11862/CJIC.2021.238 [9] Chen J, Liang H, Lin L, et al. Gold-nanorods-based gene carriers with the capability of photoacoustic imaging and photothermal therapy[J]. ACS Appl Mater Interfaces, 2016, 8(46): 31558-66. doi: 10.1021/acsami.6b10166 [10] Gao SP, Chen DH, Li QW, et al. Near- infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters[J]. Sci Rep, 2014, 4: 4384. doi: 10.1038/srep04384 [11] Alkilany AM, Thompson LB, Boulos SP, et al. Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions[J]. Adv Drug Deliv Rev, 2012, 64(2): 190-9. doi: 10.1016/j.addr.2011.03.005 [12] Yang K, Hu LL, Ma XX, et al. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles[J]. Adv Mater, 2012, 24 (14): 1868-72. doi: 10.1002/adma.201104964 [13] Chen D, Dougherty CA, Zhu K. Theranostic applications of carbon nanomaterials in cancer: focus on imaging and cargo delivery[J]. J Control Release, 2015, 210: 230-45. doi: 10.1016/j.jconrel.2015.04.021 [14] Liang C, Diao S, Wang C, et al. Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes[J]. Adv Mater, 2014, 26(32): 5646-52. doi: 10.1002/adma.201401825 [15] Ku G, Zhou M, Song SL, et al. Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm[J]. ACS Nano, 2012, 6(8): 7489-96. doi: 10.1021/nn302782y [16] Peng SW, He YY, Er M, et al. Biocompatible CuS-based nanoplatforms for efficient photothermal therapy and chemotherapy in vivo[J]. Biomater Sci, 2017, 5(3): 475-84. doi: 10.1039/C6BM00626D [17] Wang HN, Liu CB, Gong XJ, et al. In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes[J]. Nanoscale, 2014, 6(23): 14270- 9. doi: 10.1039/C4NR03949A [18] Kuo WS, Chang YT, Cho KC, et al. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy[J]. Biomaterials, 2012, 33(11): 3270-8. doi: 10.1016/j.biomaterials.2012.01.035 [19] Liu YL, Ai KL, Lu LH. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields[J]. Chem Rev, 2014, 114(9): 5057-115. doi: 10.1021/cr400407a [20] Liu YL, Ai KL, Liu JH, et al. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy[J]. Adv Mater, 2013, 25(9): 1353- 9. doi: 10.1002/adma.201204683 [21] 黄凯, 林静, 黄鹏, 等. 癌症诊疗一体化研究进展[J]. 科技导报, 2018, 36(22): 12-26. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201822004.htm [22] Miao L, Huang L. Exploring the tumor microenvironment with nanoparticles[J]. Cancer Treat Res, 2015, 166: 193-226. [23] Zhu YW, Deng M, Xu NN, et al. A tumor microenvironment responsive nanotheranostics agent for magnetic resonance imaging and synergistic photodynamic therapy/photothermal therapy of liver cancer[J]. Front Chem, 2021, 9: 650899. doi: 10.3389/fchem.2021.650899 [24] Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology [J]. Adv Drug Deliv Rev, 2014, 66: 2-25. doi: 10.1016/j.addr.2013.11.009 [25] 高振, 魏勇, 朱立新, 等. 金纳米笼-量子点-Anti-AFP复合探针对肝癌细胞株的靶向光热治疗[J]. 中华肿瘤防治杂志, 2017, 24(11): 734-8, 744. https://www.cnki.com.cn/Article/CJFDTOTAL-QLZL201711003.htm [26] Jain RK. The next frontier of molecular medicine: delivery of therapeutics[J]. Nat Med, 1998, 4(6): 655-7. doi: 10.1038/nm0698-655 [27] Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors[J]. Nat Rev Clin Oncol, 2010, 7(11): 653-64. doi: 10.1038/nrclinonc.2010.139 [28] Nagy JA, Dvorak HF. Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets[J]. Clin Exp Metastasis, 2012, 29(7): 657-62. doi: 10.1007/s10585-012-9500-6 [29] Cheng YH, He CL, Riviere JE, et al. Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation approach[J]. ACS Nano, 2020, 14(3): 3075-95. doi: 10.1021/acsnano.9b08142 [30] Cheng XJ, Sun R, Yin L, et al. Light- triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo[J]. Adv Mater, 2017, 29(6): 1604894. doi: 10.1002/adma.201604894 [31] Gao XH, Yue Q, Liu ZN, et al. Guiding brain- tumor surgery via blood-brain-barrier-permeable gold nanoprobes with acid-triggered MRI/SERRS signals[J]. Adv Mater, 2017, 29(21): 1603917. doi: 10.1002/adma.201603917 [32] Ou H, Cheng T, Zhang Y, et al. Surface-adaptive zwitterionic nanoparticles for prolonged blood circulation time and enhanced cellular uptake in tumor cells[J]. Acta Biomater, 2018, 65: 339-48. doi: 10.1016/j.actbio.2017.10.034 [33] Jokerst JV, Lobovkina T, Zare RN, et al. Nanoparticle PEGylation for imaging and therapy[J]. Nanomedicine (Lond), 2011, 6(4): 715- 28. doi: 10.2217/nnm.11.19 [34] Zhang P, Sun F, Liu S, et al. Anti- PEG antibodies in the clinic: current issues and beyond PEGylation[J]. J Control Release, 2016, 244: 184-93. doi: 10.1016/j.jconrel.2016.06.040 [35] Yang K, Zhu L, Nie LM, et al. Visualization of protease activity in vivo using an activatable photo-acoustic imaging probe based on CuS nanoparticles[J]. Theranostics, 2014, 4(2): 134-41. doi: 10.7150/thno.7217 [36] Nie LM, Chen XY. Structural and functional photoacoustic molecular tomography aided by emerging contrast agents[J]. Chem Soc Rev, 2014, 43(20): 7132-70. doi: 10.1039/C4CS00086B [37] Nie LM, Wang SJ, Wang XY, et al. In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars[J]. Small, 2014, 10(8): 1585-93, 1441. doi: 10.1002/smll.201302924 [38] Wang MN, Zhao JZ, Zhang LS, et al. Role of tumor microenvironment in tumorigenesis[J]. J Cancer, 2017, 8(5): 761- 73. doi: 10.7150/jca.17648 [39] Ma TC, Zhang PS, Hou Y, et al. Smart nanoprobes for visualization of tumor microenvironments[J]. Adv Healthc Mater, 2018, 7 (20): e1800391. doi: 10.1002/adhm.201800391 [40] Chae YC, Vaira V, Caino M, et al. Mitochondrial Akt regulation of hypoxic tumor reprogramming[J]. Cancer Cell, 2016, 30(2): 257- 72. doi: 10.1016/j.ccell.2016.07.004 [41] Zhu AJ, Miao K, Deng YB, et al. Dually pH/reduction-responsive vesicles for ultrahigh- contrast fluorescence imaging and thermochemotherapy- synergized tumor ablation[J]. ACS Nano, 2015, 9 (8): 7874-85. doi: 10.1021/acsnano.5b02843 [42] Lin QN, Bao CY, Yang YL, et al. Highly discriminating photorelease of anticancer drugs based on hypoxia activatable phototrigger conjugated chitosan nanoparticles[J]. Adv Mater, 2013, 25(14): 1981-6. doi: 10.1002/adma.201204455 [43] Chang KW, Liu ZH, Fang XF, et al. Enhanced phototherapy by nanoparticle-enzyme via generation and photolysis of hydrogen peroxide[J]. Nano Lett, 2017, 17(7): 4323-9. doi: 10.1021/acs.nanolett.7b01382 [44] Ji XY, Kang Y, Ouyang J, et al. Synthesis of ultrathin biotite nanosheets as an intelligent theranostic platform for combination cancer therapy[J]. Adv Sci (Weinh), 2019, 6(19): 1901211. doi: 10.1002/advs.201901211 [45] Okamoto H, Shiraki K, Yasuda R, et al. Chitosan-interferon-β gene complex powder for inhalation treatment of lung metastasis in mice [J]. J Control Release, 2011, 150(2): 187-95. doi: 10.1016/j.jconrel.2010.12.006 [46] 李双双. 功能化光热纳米材料用于光声成像指导下的肿瘤精准消融[D]. 济南: 山东师范大学, 2018. [47] Ouyang RZ, Cao PH, Jia PP, et al. Bistratal Au@Bi2S3 nanobones for excellent NIR-triggered/multimodal imaging-guided synergistic therapy for liver cancer[J]. Bioact Mater, 2021, 6(2): 386-403. doi: 10.1016/j.bioactmat.2020.08.023 [48] Gabizon AA. Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy[J]. Cancer Investig, 2001, 19(4): 424-36. doi: 10.1081/CNV-100103136 [49] Shevchuk OO, Posokhova EA, Sakhno LA, et al. Theoretical ground for adsorptive therapy of anthracyclines cardiotoxicity[J]. Exp Oncol, 2012, 34(4): 314-22. [50] Yiang GT, Chou PL, Hung YT, et al. Vitamin C enhances anticancer activity in methotrexate-treated Hep3B hepatocellular carcinoma cells[J]. Oncol Rep, 2014, 32(3): 1057-63. doi: 10.3892/or.2014.3289 [51] Yang Z, Song JB, Tang W, et al. Stimuli-responsive nanotheranostics for real-time monitoring drug release by photoacoustic imaging [J]. Theranostics, 2019, 9(2): 526-36. doi: 10.7150/thno.30779 [52] Urano M. Invited Review: for the clinical application of thermochemotherapy given at mild temperatures[J]. Int J Hyperth, 1999, 15(2): 79-107. doi: 10.1080/026567399285765 [53] 胥海婷, 吴亿晗, 石金凤, 等. 基于纳米共载策略的光热治疗联合化疗抗肿瘤研究进展[J]. 药学学报, 2020, 55(8): 1774-83. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXB202008008.htm [54] Fletcher JI, Williams RT, Henderson MJ, et al. ABC transporters as mediators of drug resistance and contributors to cancer cell biology [J]. Drug Resist Updat, 2016, 26: 1-9. doi: 10.1016/j.drup.2016.03.001 [55] Huang P, Wang GC, Su Y, et al. Stimuli-responsive nanodrug selfassembled from amphiphilic drug-inhibitor conjugate for overcoming multidrug resistance in cancer treatment[J]. Theranostics, 2019, 9(20): 5755-68. doi: 10.7150/thno.36163 [56] Tu ZX, Qiao HS, Yan YT, et al. Directed graphene-based nanoplatforms for hyperthermia: overcoming multiple drug resistance[J]. Angew Chem Int Ed Engl, 2018, 57(35): 11198-202. doi: 10.1002/anie.201804291 [57] Xing YX, Zhang JX, Chen F, et al. Mesoporous polydopamine nanoparticles with co- delivery function for overcoming multidrug resistance via synergistic chemo-photothermal therapy[J]. Nanoscale, 2017, 9(25): 8781-90. doi: 10.1039/C7NR01857F [58] Wang TT, Wang DG, Yu HJ, et al. Intracellularly acid- switchable multifunctional micelles for combinational photo/chemotherapy of the drug-resistant tumor[J]. ACS Nano, 2016, 10(3): 3496-508. doi: 10.1021/acsnano.5b07706
点击查看大图
表(1)
计量
- 文章访问数: 263
- HTML全文浏览量: 134
- PDF下载量: 22
- 被引次数: 0