留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

MR T1WI影像组学对结核性脊柱炎与布鲁菌性脊柱炎的诊断价值

何雄 陈艳丽 帕哈提·吐逊江 夏雨薇 刘文亚 郭辉

何雄, 陈艳丽, 帕哈提·吐逊江, 夏雨薇, 刘文亚, 郭辉. MR T1WI影像组学对结核性脊柱炎与布鲁菌性脊柱炎的诊断价值[J]. 分子影像学杂志, 2023, 46(3): 442-447. doi: 10.12122/j.issn.1674-4500.2023.03.09
引用本文: 何雄, 陈艳丽, 帕哈提·吐逊江, 夏雨薇, 刘文亚, 郭辉. MR T1WI影像组学对结核性脊柱炎与布鲁菌性脊柱炎的诊断价值[J]. 分子影像学杂志, 2023, 46(3): 442-447. doi: 10.12122/j.issn.1674-4500.2023.03.09
HE Xiong, CHEN Yanli, Pahati·Tuxunjiang, XIA Yuwei, LIU Wenya, GUO Hui. Diagnostic value of MR T1WI imaging omics in tuberculous spondylitis and brucella spondylitis[J]. Journal of Molecular Imaging, 2023, 46(3): 442-447. doi: 10.12122/j.issn.1674-4500.2023.03.09
Citation: HE Xiong, CHEN Yanli, Pahati·Tuxunjiang, XIA Yuwei, LIU Wenya, GUO Hui. Diagnostic value of MR T1WI imaging omics in tuberculous spondylitis and brucella spondylitis[J]. Journal of Molecular Imaging, 2023, 46(3): 442-447. doi: 10.12122/j.issn.1674-4500.2023.03.09

MR T1WI影像组学对结核性脊柱炎与布鲁菌性脊柱炎的诊断价值

doi: 10.12122/j.issn.1674-4500.2023.03.09
基金项目: 

省部共建中亚高发病成因与防治国家重点实验室开放课题资助项目 SKL-HIDCA-2021-22

详细信息
    作者简介:

    何雄,在读硕士研究生,E-mail: hexiong214803@163.com

    通讯作者:

    郭辉,博士,主任医师,E-mail: guohui9804@126.com

Diagnostic value of MR T1WI imaging omics in tuberculous spondylitis and brucella spondylitis

  • 摘要:   目的  探讨MR T1WI影像组学的机器学习在结核性脊柱炎(TS)与布鲁菌性脊柱炎(BS)的鉴别诊断价值。  方法  回顾性收集我院经临床和实验室确诊的77例TS患者与34例BS患者的临床资料。按0.8:0.2的比例将病例分为训练集(n=88)和验证集(n=23)。首先由2位经验丰富的影像诊断医生对MR T1WI勾画感兴趣区域并提取MR T1WI影像组学特征,然后采用方差选择法、单变量特征选择法、最小绝对收缩与选择算子算法对组学特征信息进行选择和降维处理,挑选8项最具有特征的值。应用极限梯度增强法、Logistic回归法、支持向量机法、K邻近法4种机器学习算法构建MR T1WI影像组学在辨别确诊TS与BS模型。采用ROC曲线及曲线下面积(AUC)评判模型的确诊效能。  结果  极限梯度增强模型的AUC为0.80(95% CI:0.59~1.00),准确度为0.83;Logistic回归模型的AUC为0.85(95% CI:0.65~1.00),准确度为0.78;支持向量机模型的AUC为0.79(95% CI:0.62~0.97),准确度为0.78;K邻近法模型的AUC为0.75(95% CI:0.53~0.98),准确度为0.83。验证集中,Logistic回归模型的确诊效能最高。  结论  MR T1WI影像组学的机器学习在鉴别TS与BS的诊断效能较高,Logistic回归模型表现出更优的诊断效能。

     

  • 图  1  MR T1WI上手动勾画感兴趣区前后对比

    Figure  1.  Comparison before and after manual delineation of ROI on MR T1WI.

    A: Before the outline; B: After the outline.

    图  2  在特征选择上的套索算法

    Figure  2.  LASSO algorithm on feature selection.

    A: MES path; B: LASSO path. Using Lasso model, 8 features which are correspond to the optimal alpha value were selected.

    图  3  LASSO降维后通过模型选择筛选出的特征及其权重

    Figure  3.  Features and their weights filtered through model selection after LASSO dimensionality reduction.

    图  4  4种机器学习算法预测模型在训练集中的ROC曲线

    Figure  4.  ROC curve of four machine learning algorithm prediction models in training set.

    A: LR; B: SVM; C: KNN; D: XGBoost.

    图  5  4种机器学习算法预测模型在验证集中的ROC曲线

    Figure  5.  ROC curve of four machine learning algorithm prediction models in validation set.

    A: LR; B: SVM; C: KNN; D: XGBoost.

    表  1  训练集与验证集患者性别、年龄比较

    Table  1.   Comparison of gender and age of patients in training set and verification set

    Project Training set(n=88) Verification set(n=23) χ2/t P
    Gender(n 0.589 0.443
      Male 66 19
      Female 22 4
    Age(years, Mean±SD 50.45±11.40 54.83±8.59 1.713 0.089
    下载: 导出CSV

    表  2  4种T1WI机器学习算法预测模型在训练集中的诊断效能

    Table  2.   Diagnostic effectiveness of four T1WI machine learning algorithm prediction models in training set

    Classifiers AUC 95% CI Precision
    LR 0.88 0.79-0.98 0.83
    SVM 0.92 0.84-1.00 0.83
    KNN 0.91 0.85-0.98 0.78
    XGBoost 0.99 0.97-1.00 0.97
    LR: Logistic regression; SVM: Support vector machine; KNN: K-nearest neighbor; XGBoost: Extreme gradient boosting.
    下载: 导出CSV

    表  3  4种T1WI机器学习算法预测模型在验证集中的诊断效能

    Table  3.   Diagnostic effectiveness of four T1WI machine learning algorithm prediction models in validation set

    Classifiers AUC 95% CI Precision
    LR 0.85 0.84-1.00 0.78
    SVM 0.79 0.87-1.00 0.78
    KNN 0.75 0.82-1.00 0.83
    XGBoost 0.80 0.62-1.00 0.83
    下载: 导出CSV
  • [1] 李立新, 阮锦荣, 孙莉. MRI与CT诊断及鉴别脊柱结核与脊柱肿瘤的价值观察[J]. 中国CT和MRI杂志, 2021, 19(8): 175-7. https://www.cnki.com.cn/Article/CJFDTOTAL-CTMR202108057.htm
    [2] Liao JC, Lai PL, Chen LH, et al. Surgical outcomes of infectious spondylitis after vertebroplasty, and comparisons between pyogenic and tuberculosis[J]. BMC Infect Dis, 2018, 18(1): 555. doi: 10.1186/s12879-018-3486-x
    [3] 帕哈提·吐逊江, 杨来红, 何雄, 等. 影像组学在脊柱疾病中的应用[J]. 磁共振成像, 2022, 13(5): 162-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC202205036.htm
    [4] Joshi RS, Lau D, Ames CP. Artificial intelligence for adult spinal deformity: current state and future directions[J]. Spine J, 2021, 21 (10): 1626-34. doi: 10.1016/j.spinee.2021.04.019
    [5] Yu JH, Shi ZF, Lian YX, et al. Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade Ⅱ glioma[J]. Eur Radiol, 2017, 27(8): 3509-22. doi: 10.1007/s00330-016-4653-3
    [6] 黄冠, 尹芳艳, 李小雪, 等. 影像组学研究方法进展[J]. 实用放射学杂志, 2019, 35(2): 308-11. https://www.cnki.com.cn/Article/CJFDTOTAL-FSXS202011032.htm
    [7] 蒋西然, 蒋韬, 孙嘉瑶, 等. 深度学习人工智能技术在医学影像辅助分析中的应用[J]. 中国医疗设备, 2021, 36(6): 164-71. https://www.cnki.com.cn/Article/CJFDTOTAL-YLSX202106040.htm
    [8] Wang K, Qiao Z, Zhao XB, et al. Individualized discrimination of tumor recurrence from radiation necrosis in glioma patients using an integrated radiomics-based model[J]. Eur J Nucl Med Mol Imaging, 2020, 47(6): 1400-11. doi: 10.1007/s00259-019-04604-0
    [9] Peng ZY, Wang YM, Wang YX, et al. Application of radiomics and machine learning in head and neck cancers[J]. Int J Biol Sci, 2021, 17(2): 475-86. doi: 10.7150/ijbs.55716
    [10] 吴林永, 赵羽佳, 林鹏, 等. 基于人工智能术前预测乳腺导管内癌微浸润的价值[J]. 中国医学影像学杂志, 2021, 29(1): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYZ202101011.htm
    [11] 蒋忠军, 蒋小龙, 文建荣, 等. 基于影像组学分析的良恶性乳腺肿瘤临床诊断与预测模型研究[J]. 实用放射学杂志, 2022, 38(2): 236-9.
    [12] 阴彦林, 杨新明, 田野, 等. MRI和PET/CT在感染性脊柱炎鉴别诊断中的应用价值[J]. 实用放射学杂志, 2021, 37(10): 1673-6, 1684.
    [13] Granzier RWY, Ibrahim A, Primakov SP, et al. MRI-based radiomics analysis for the pretreatment prediction of pathologic complete tumor response to neoadjuvant systemic therapy in breast cancer patients: a multicenter study[J]. Cancers, 2021, 13(10): 2447.
    [14] Yamamoto T, Kimura H, Hayashi K, et al. Pseudo- continuous arterial spin labeling MR images in Warthin tumors and pleomorphic adenomas of the parotid gland: qualitative and quantitative analyses and their correlation with histopathologic and DWI and dynamic contrast enhanced MRI findings[J]. Neuroradiology, 2018, 60(8): 803-12.
    [15] Liu JF, Wang CJ, Guo W, et al. A preliminary study using spinal MRI-based radiomics to predict high-risk cytogenetic abnormalities in multiple myeloma[J]. Radiol med, 2021, 126(9): 1226-35.
    [16] Li, He, MM, et al. Radiomics based on lumbar spine magnetic resonance imaging to detect osteoporosis[J]. Acad Radiol, 2021, 28 (6): e165-71.
    [17] Daimiel Naranjo I, Gibbs P, Reiner JS, et al. Radiomics and machine learning with multiparametric breast MRI for improved diagnostic accuracy in breast cancer diagnosis[J]. Diagnostics (Basel), 2021, 11(6): 919.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  119
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-06
  • 网络出版日期:  2023-06-15
  • 刊出日期:  2023-05-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日