Progress of 18F-FDG and 18F-NaF positron emission tomography in carotid atherosclerotic plaque imaging
-
摘要: 卒中和脑内其他血栓栓塞事件通常是由于颈动脉粥样硬化所致,其中有炎症存在的动脉粥样硬化斑块更加脆弱,会增加临床症状出现的几率。动脉粥样硬化斑块的发生和发展涉及多种病理生理过程,包括炎症、细胞凋亡、坏死和钙化。正电子发射断层扫描(PET)不仅可以检测而且可以量化动脉粥样硬化形成的病理生理过程。在PET检查的基础上,18F-FDG在颈动脉粥样硬化中显示炎症过程有无可替代的作用,其是一种公认的评估动脉粥样硬化炎症的工具。同时,血管钙化过程在动脉粥样硬化斑块形成的早期阶段发挥重要作用,18F-NaF通过化学吸附沉积在羟基磷灰石上,据此可推断出动脉粥样硬化斑块内是否存在羟基磷灰石,进一步细化炎症过程中钙化的形成过程。本文基于18F-FDG和18F-NaF在PET/CT和PET/MRI上的不同的成像原理,阐述两种显像剂对与颈动脉斑块的最新进展情况。Abstract: Stroke and other thromboembolic events in the brain are usually due to carotid atherosclerosis, in which atherosclerotic plaques present with inflammation are more fragile and increase the chance of clinical symptoms. The development and progression of atherosclerotic plaques involves a variety of pathophysiological processes, including inflammation, apoptosis, necrosis, and calcification. PET can not only detect but also quantify the pathophysiological process of atherogenesis. On the basis of PET examination, 18F-FDG has an irreplaceable role in demonstrating the inflammatory process in carotid atherosclerosis, and it is a well-established tool for assessing atherosclerotic inflammation. At the same time, the process of vascular calcification plays an important role in the early stage of atherosclerotic plaque formation, and 18F-NaF is deposited on hydroxyapatite by chemisorption, based on which the presence of hydroxyapatite in atherosclerotic plaques can be deduced to further refine the formation process of calcification during inflammation. In this paper, based on the different imaging principles of 18F-FDG and 18F-NaF on PET/CT and PET/MRI, the latest progress of the two imaging agents on carotid plaques is described.
-
Key words:
- 18F-NaF /
- 18F-FDG /
- carotid atherosclerosis /
- PET/CT /
- PET/MRI
-
[1] Kaczynski J, Sellers S, Seidman MA, et al. 18F-NaF PET/MRI for detection of carotid atheroma in acute neurovascular syndrome[J]. Radiology, 2022, 305(1): 137-48. doi: 10.1148/radiol.212283 [2] Liu J, Kerwin WS, Caldwell JH, et al. High resolution FDG-microPET of carotid atherosclerosis: plaque components underlying enhanced FDG uptake[J]. Int J Cardiovasc Imaging, 2016, 32(1): 145-52. doi: 10.1007/s10554-015-0739-2 [3] Lui SK, Nguyen MH. Elderly stroke rehabilitation: overcoming the complications and its associated challenges[J]. Curr Gerontol Geriatr Res, 2018, 2018: 9853837. [4] Morris DR, Ayabe K, Inoue T, et al. Evidence-based carotid interventions for stroke prevention: state-of-the-art review[J]. J Atheroscler Thromb, 2017, 24(4): 373-87. doi: 10.5551/jat.38745 [5] Stefanadis C, Antoniou CK, Tsiachris D, et al. Coronary atherosclerotic vulnerable plaque: current perspectives[J]. J Am Heart Assoc, 2017, 6(3): e005543. doi: 10.1161/JAHA.117.005543 [6] Langley SR, Willeit K, Didangelos A, et al. Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques[J]. J Clin Invest, 2017, 127(4): 1546-60. doi: 10.1172/JCI86924 [7] Badimon L, Padró T, Vilahur G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease[J]. Eur Heart J Acute Cardiovasc Care, 2012, 1(1): 60-74. doi: 10.1177/2048872612441582 [8] Krzyszczyk P, Schloss R, Palmer A, et al. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes[J]. Front Physiol, 2018, 9: 419. doi: 10.3389/fphys.2018.00419 [9] Cejka D, Kuntner C, Preusser M, et al. FDG uptake is a surrogate marker for defining the optimal biological dose of the mTOR inhibitor everolimus in vivo[J ]. Br J Cancer, 2009, 100(11): 1739-45. doi: 10.1038/sj.bjc.6605076 [10] Schäfer VS, Jin L, Schmidt WA. Imaging for diagnosis, monitoring, and outcome prediction of large vessel vasculitides[J]. Curr Rheumatol Rep, 2020, 22(11): 76. doi: 10.1007/s11926-020-00955-y [11] Chróinín DN, Marnane M, Akijian L, et al. Serum lipids associated with inflammation-related PET-FDG uptake in symptomatic carotid plaque[J]. Neurology, 2014, 82(19): 1693-9. doi: 10.1212/WNL.0000000000000408 [12] Yoo HJ, Kim S, Park MS, et al. Vascular inflammation stratified by C-reactive protein and low-density lipoprotein cholesterol levels: analysis with 18F-FDG PET[J]. J Nucl Med, 2011, 52(1): 10-7. doi: 10.2967/jnumed.110.080838 [13] Yoo HJ, Kim S, Park MS, et al. Serum adipocyte fatty acid-binding protein is associated independently with vascular inflammation: analysis with 18F-fluorodeoxyglucose positron emission tomography[J]. J Clin Endocrinol Metab, 2011, 96(3): E488-92. doi: 10.1210/jc.2010-1473 [14] Li YF, Liang Y, Yang P, et al. 18F- FDG uptake velocity but not uptake level is associated with progression of carotid plaque[J]. Eur Radiol, 2020, 30(4): 2403-11. doi: 10.1007/s00330-019-06535-8 [15] Li X, Samnick S, Lapa C, et al. 68Ga-DOTATATE PET/CT for the detection of inflammation of large arteries: correlation with 18F-FDG, calcium burden and risk factors[J]. EJNMMI Res, 2012, 2 (1): 52. doi: 10.1186/2191-219X-2-52 [16] Strobl FF, Rominger A, Wolpers S, et al. Impact of cardiovascular risk factors on vessel wall inflammation and calcified plaque burden differs across vascular beds: a PET-CT study[J]. Int J Cardiovasc Imaging, 2013, 29(8): 1899-908. doi: 10.1007/s10554-013-0277-8 [17] Hetterich H, Rominger A, Walter L, et al. Natural history of atherosclerotic disease progression as assessed by 18F-FDG PET/CT[J]. Int J Cardiovasc Imaging, 2016, 32(1): 49-59. doi: 10.1007/s10554-015-0660-8 [18] Ripa RS, Kjær A. Imaging atherosclerosis with hybrid positron emission tomography/magnetic resonance imaging[J]. Biomed Res Int, 2015, 2015: 914516. [19] Bueno A, March JR, Garcia P, et al. Carotid plaque inflammation assessed by 18F-FDG PET/CT and lp-PLA2 is higher in symptomatic patients[J]. Angiology, 2021, 72(3): 260-7. doi: 10.1177/0003319720965419 [20] Drzezga A, Souvatzoglou M, Eiber M, et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses[J]. J Nucl Med, 2012, 53(6): 845-55. doi: 10.2967/jnumed.111.098608 [21] Li X, Heber D, Rausch I, et al. Quantitative assessment of atherosclerotic plaques on 18F-FDG PET/MRI: comparison with a PET/CT hybrid system[J]. Eur J Nucl Med Mol Imaging, 2016, 43 (8): 1503-12. doi: 10.1007/s00259-016-3308-6 [22] Slart RHJA, Group W, Group R, et al. FDG-PET/CT(A) imaging in large vessel vasculitis and polymyalgia rheumatica: joint procedural recommendation of the EANM, SNMMI, and the PET Interest Group (PIG), and endorsed by the ASNC[J]. Eur J Nucl Med Mol Imaging, 2018, 45(7): 1250-69. doi: 10.1007/s00259-018-3973-8 [23] Hyafil F, Schindler A, Sepp D, et al. High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined 18F-FDG PET/MR imaging[J]. Eur J Nucl Med Mol Imaging, 2016, 43 (2): 270-9. doi: 10.1007/s00259-015-3201-8 [24] Silvera SS, et al. Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries[J]. Atherosclerosis, 2009, 207(1): 139-43. doi: 10.1016/j.atherosclerosis.2009.04.023 [25] Good E, Ochoa-Figueroa M, Ziegler M, et al. 18Fluorodeoxyglucose uptake in relation to fat fraction and R2* in atherosclerotic plaques, using PET/MRI: a pilot study[J]. Sci Rep, 2021, 11: 14217. doi: 10.1038/s41598-021-93605-x [26] Figueroa AL, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events[J]. JACC Cardiovasc Imaging, 2013, 6(12): 1250-9. doi: 10.1016/j.jcmg.2013.08.006 [27] Derlin T, Wisotzki C, Richter U, et al. In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: correlation with atherogenic risk factors[J]. J Nucl Med, 2011, 52 (3): 362-8. doi: 10.2967/jnumed.110.081208 [28] Joshi NV, et al. 18F-fluoride positron emission tomography for identification of ruptured and high- risk coronary atherosclerotic plaques: a prospective clinical trial[J]. Lancet, 2014, 383(9918): 705-13. doi: 10.1016/S0140-6736(13)61754-7 [29] Maria João Vidigal Ferreira MD P, Md MOS, Md RS, et al. Assessment of atherosclerotic plaque calcification using F18- NaF PET-CT[J]. J Nucl Cardiol, 2018, 25(5): 1733-41. doi: 10.1007/s12350-016-0776-9 [30] Morbelli S, Fiz F, Piccardo A, et al. Divergent determinants of 18FNaF uptake and visible calcium deposition in large arteries: relationship with Framingham risk score[J]. Int J Cardiovasc Imaging, 2014, 30(2): 439-47. doi: 10.1007/s10554-013-0342-3 [31] Fiz F, Piccardo A, Morbelli S, et al. Longitudinal analysis of atherosclerotic plaques evolution: an 18F-NaF PET/CT study[J]. J Nucl Cardiol, 2022, 29(4): 1713-23. doi: 10.1007/s12350-021-02556-3 [32] Vengrenyuk Y, Carlier S, Xanthos S, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps[J]. Proc Natl Acad Sci USA, 2006, 103(40): 14678-83. doi: 10.1073/pnas.0606310103 [33] Derlin T, Tóth Z, Papp L, et al. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study[J]. J Nucl Med, 2011, 52(7): 1020-7. doi: 10.2967/jnumed.111.087452 [34] de Oliveira-Santos M, et al. Atherosclerotic plaque metabolism in high cardiovascular risk subjects-A subclinical atherosclerosis imaging study with 18F-NaF PET-CT[J]. Atherosclerosis, 2017, 260: 41-6. doi: 10.1016/j.atherosclerosis.2017.03.014 [35] Quirce R, Martínez- Rodríguez I, Banzo I, et al. New insight of functional molecular imaging into the atheroma biology: 18F-NaF and 18F-FDG in symptomatic and asymptomatic carotid plaques after recent CVA. Preliminary results[J]. Clin Physiol Funct Imaging, 2016, 36(6): 499-503. doi: 10.1111/cpf.12254 [36] Arai-Okuda H, Norikane T, Yamamoto Y, et al. 18F-FDG PET/CT in patients with polymyositis/dermatomyositis: correlation with serum muscle enzymes[J]. Eur J Hybrid Imaging, 2020, 4(1): 14. doi: 10.1186/s41824-020-00084-w [37] Vesey AT, Jenkins WSA, Irkle A, et al. 18F-fluoride and 18Ffluorodeoxyglucose positron emission tomography after transient ischemic attack or minor ischemic stroke: case-control study[J]. Circ Cardiovasc Imaging, 2017, 10(3): e004976. doi: 10.1161/CIRCIMAGING.116.004976 [38] Fujimoto K, Norikane T, Yamamoto Y, et al. Association between carotid 18F-NaF and 18F- FDG uptake on PET/CT with ischemic vascular brain disease on MRI in patients with carotid artery disease[J]. Ann Nucl Med, 2019, 33(12): 907-15. doi: 10.1007/s12149-019-01403-3 [39] Cocker MS, Spence JD, Hammond R, et al. 18F-NaF PET/CT identifies active calcification in carotid plaque[J]. JACC Cardiovasc Imaging, 2017, 10(4): 486-8. doi: 10.1016/j.jcmg.2016.03.005 [40] Zhang Y, et al. Noninvasive assessment of carotid plaques calcification by 18F-sodium fluoride accumulation: correlation with pathology[J]. J Stroke Cerebrovasc Dis, 2018, 27(7): 1796-801. doi: 10.1016/j.jstrokecerebrovasdis.2018.02.011 [41] Borja AJ, Bhattaru A, Rojulpote C, et al. Association between atherosclerotic cardiovascular disease risk score estimated by pooled cohort equation and coronary plaque burden as assessed by NaF-PET/CT[J]. Am J Nucl Med Mol Imaging, 2020, 10(6): 312-8. [42] Hop MD H, de Boer MD PSA, BSc MR, et al. 18F-sodium fluoride positron emission tomography assessed microcalcifications in culprit and non-culprit human carotid plaques[J]. J Nucl Cardiol, 2019, 26(4): 1064-75. doi: 10.1007/s12350-018-1325-5 [43] Mechtouff L, Sigovan M, Costes N, et al. 18F-NaF PET- MRI: an innovative tool to assess carotid artery plaque vulnerability[J]. Eur J Neurol, 2018, 25(2): e18-e19. [44] Mechtouff L, Sigovan M, Douek P, et al. Simultaneous assessment of microcalcifications and morphological criteria of vulnerability in carotid artery plaque using hybrid 18F-NaF PET/MRI[J]. J Nucl Cardiol, 2022, 29(3): 1064-74. doi: 10.1007/s12350-020-02400-0
点击查看大图
计量
- 文章访问数: 355
- HTML全文浏览量: 283
- PDF下载量: 21
- 被引次数: 0