留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

18F-FDG及18F-NaF正电子发射断层扫描在颈动脉粥样硬化斑块成像中的研究进展

高飞 欧阳雪晖 王慧杰

高飞, 欧阳雪晖, 王慧杰. 18F-FDG及18F-NaF正电子发射断层扫描在颈动脉粥样硬化斑块成像中的研究进展[J]. 分子影像学杂志, 2023, 46(1): 181-187. doi: 10.12122/j.issn.1674-4500.2023.01.35
引用本文: 高飞, 欧阳雪晖, 王慧杰. 18F-FDG及18F-NaF正电子发射断层扫描在颈动脉粥样硬化斑块成像中的研究进展[J]. 分子影像学杂志, 2023, 46(1): 181-187. doi: 10.12122/j.issn.1674-4500.2023.01.35
GAO Fei, OUYANG Xuehui, WANG Huijie. Progress of 18F-FDG and 18F-NaF positron emission tomography in carotid atherosclerotic plaque imaging[J]. Journal of Molecular Imaging, 2023, 46(1): 181-187. doi: 10.12122/j.issn.1674-4500.2023.01.35
Citation: GAO Fei, OUYANG Xuehui, WANG Huijie. Progress of 18F-FDG and 18F-NaF positron emission tomography in carotid atherosclerotic plaque imaging[J]. Journal of Molecular Imaging, 2023, 46(1): 181-187. doi: 10.12122/j.issn.1674-4500.2023.01.35

18F-FDG及18F-NaF正电子发射断层扫描在颈动脉粥样硬化斑块成像中的研究进展

doi: 10.12122/j.issn.1674-4500.2023.01.35
基金项目: 

2022年度自治区卫生健康科技项目 202201031

详细信息
    作者简介:

    高飞,在读硕士研究生,E-mail: 18747073478@163.com

    通讯作者:

    欧阳雪晖,硕士,副主任医师,E-mail: 18748324400@163.com

Progress of 18F-FDG and 18F-NaF positron emission tomography in carotid atherosclerotic plaque imaging

  • 摘要: 卒中和脑内其他血栓栓塞事件通常是由于颈动脉粥样硬化所致,其中有炎症存在的动脉粥样硬化斑块更加脆弱,会增加临床症状出现的几率。动脉粥样硬化斑块的发生和发展涉及多种病理生理过程,包括炎症、细胞凋亡、坏死和钙化。正电子发射断层扫描(PET)不仅可以检测而且可以量化动脉粥样硬化形成的病理生理过程。在PET检查的基础上,18F-FDG在颈动脉粥样硬化中显示炎症过程有无可替代的作用,其是一种公认的评估动脉粥样硬化炎症的工具。同时,血管钙化过程在动脉粥样硬化斑块形成的早期阶段发挥重要作用,18F-NaF通过化学吸附沉积在羟基磷灰石上,据此可推断出动脉粥样硬化斑块内是否存在羟基磷灰石,进一步细化炎症过程中钙化的形成过程。本文基于18F-FDG和18F-NaF在PET/CT和PET/MRI上的不同的成像原理,阐述两种显像剂对与颈动脉斑块的最新进展情况。

     

  • [1] Kaczynski J, Sellers S, Seidman MA, et al. 18F-NaF PET/MRI for detection of carotid atheroma in acute neurovascular syndrome[J]. Radiology, 2022, 305(1): 137-48. doi: 10.1148/radiol.212283
    [2] Liu J, Kerwin WS, Caldwell JH, et al. High resolution FDG-microPET of carotid atherosclerosis: plaque components underlying enhanced FDG uptake[J]. Int J Cardiovasc Imaging, 2016, 32(1): 145-52. doi: 10.1007/s10554-015-0739-2
    [3] Lui SK, Nguyen MH. Elderly stroke rehabilitation: overcoming the complications and its associated challenges[J]. Curr Gerontol Geriatr Res, 2018, 2018: 9853837.
    [4] Morris DR, Ayabe K, Inoue T, et al. Evidence-based carotid interventions for stroke prevention: state-of-the-art review[J]. J Atheroscler Thromb, 2017, 24(4): 373-87. doi: 10.5551/jat.38745
    [5] Stefanadis C, Antoniou CK, Tsiachris D, et al. Coronary atherosclerotic vulnerable plaque: current perspectives[J]. J Am Heart Assoc, 2017, 6(3): e005543. doi: 10.1161/JAHA.117.005543
    [6] Langley SR, Willeit K, Didangelos A, et al. Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques[J]. J Clin Invest, 2017, 127(4): 1546-60. doi: 10.1172/JCI86924
    [7] Badimon L, Padró T, Vilahur G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease[J]. Eur Heart J Acute Cardiovasc Care, 2012, 1(1): 60-74. doi: 10.1177/2048872612441582
    [8] Krzyszczyk P, Schloss R, Palmer A, et al. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes[J]. Front Physiol, 2018, 9: 419. doi: 10.3389/fphys.2018.00419
    [9] Cejka D, Kuntner C, Preusser M, et al. FDG uptake is a surrogate marker for defining the optimal biological dose of the mTOR inhibitor everolimus in vivo[J ]. Br J Cancer, 2009, 100(11): 1739-45. doi: 10.1038/sj.bjc.6605076
    [10] Schäfer VS, Jin L, Schmidt WA. Imaging for diagnosis, monitoring, and outcome prediction of large vessel vasculitides[J]. Curr Rheumatol Rep, 2020, 22(11): 76. doi: 10.1007/s11926-020-00955-y
    [11] Chróinín DN, Marnane M, Akijian L, et al. Serum lipids associated with inflammation-related PET-FDG uptake in symptomatic carotid plaque[J]. Neurology, 2014, 82(19): 1693-9. doi: 10.1212/WNL.0000000000000408
    [12] Yoo HJ, Kim S, Park MS, et al. Vascular inflammation stratified by C-reactive protein and low-density lipoprotein cholesterol levels: analysis with 18F-FDG PET[J]. J Nucl Med, 2011, 52(1): 10-7. doi: 10.2967/jnumed.110.080838
    [13] Yoo HJ, Kim S, Park MS, et al. Serum adipocyte fatty acid-binding protein is associated independently with vascular inflammation: analysis with 18F-fluorodeoxyglucose positron emission tomography[J]. J Clin Endocrinol Metab, 2011, 96(3): E488-92. doi: 10.1210/jc.2010-1473
    [14] Li YF, Liang Y, Yang P, et al. 18F- FDG uptake velocity but not uptake level is associated with progression of carotid plaque[J]. Eur Radiol, 2020, 30(4): 2403-11. doi: 10.1007/s00330-019-06535-8
    [15] Li X, Samnick S, Lapa C, et al. 68Ga-DOTATATE PET/CT for the detection of inflammation of large arteries: correlation with 18F-FDG, calcium burden and risk factors[J]. EJNMMI Res, 2012, 2 (1): 52. doi: 10.1186/2191-219X-2-52
    [16] Strobl FF, Rominger A, Wolpers S, et al. Impact of cardiovascular risk factors on vessel wall inflammation and calcified plaque burden differs across vascular beds: a PET-CT study[J]. Int J Cardiovasc Imaging, 2013, 29(8): 1899-908. doi: 10.1007/s10554-013-0277-8
    [17] Hetterich H, Rominger A, Walter L, et al. Natural history of atherosclerotic disease progression as assessed by 18F-FDG PET/CT[J]. Int J Cardiovasc Imaging, 2016, 32(1): 49-59. doi: 10.1007/s10554-015-0660-8
    [18] Ripa RS, Kjær A. Imaging atherosclerosis with hybrid positron emission tomography/magnetic resonance imaging[J]. Biomed Res Int, 2015, 2015: 914516.
    [19] Bueno A, March JR, Garcia P, et al. Carotid plaque inflammation assessed by 18F-FDG PET/CT and lp-PLA2 is higher in symptomatic patients[J]. Angiology, 2021, 72(3): 260-7. doi: 10.1177/0003319720965419
    [20] Drzezga A, Souvatzoglou M, Eiber M, et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses[J]. J Nucl Med, 2012, 53(6): 845-55. doi: 10.2967/jnumed.111.098608
    [21] Li X, Heber D, Rausch I, et al. Quantitative assessment of atherosclerotic plaques on 18F-FDG PET/MRI: comparison with a PET/CT hybrid system[J]. Eur J Nucl Med Mol Imaging, 2016, 43 (8): 1503-12. doi: 10.1007/s00259-016-3308-6
    [22] Slart RHJA, Group W, Group R, et al. FDG-PET/CT(A) imaging in large vessel vasculitis and polymyalgia rheumatica: joint procedural recommendation of the EANM, SNMMI, and the PET Interest Group (PIG), and endorsed by the ASNC[J]. Eur J Nucl Med Mol Imaging, 2018, 45(7): 1250-69. doi: 10.1007/s00259-018-3973-8
    [23] Hyafil F, Schindler A, Sepp D, et al. High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined 18F-FDG PET/MR imaging[J]. Eur J Nucl Med Mol Imaging, 2016, 43 (2): 270-9. doi: 10.1007/s00259-015-3201-8
    [24] Silvera SS, et al. Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries[J]. Atherosclerosis, 2009, 207(1): 139-43. doi: 10.1016/j.atherosclerosis.2009.04.023
    [25] Good E, Ochoa-Figueroa M, Ziegler M, et al. 18Fluorodeoxyglucose uptake in relation to fat fraction and R2* in atherosclerotic plaques, using PET/MRI: a pilot study[J]. Sci Rep, 2021, 11: 14217. doi: 10.1038/s41598-021-93605-x
    [26] Figueroa AL, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events[J]. JACC Cardiovasc Imaging, 2013, 6(12): 1250-9. doi: 10.1016/j.jcmg.2013.08.006
    [27] Derlin T, Wisotzki C, Richter U, et al. In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: correlation with atherogenic risk factors[J]. J Nucl Med, 2011, 52 (3): 362-8. doi: 10.2967/jnumed.110.081208
    [28] Joshi NV, et al. 18F-fluoride positron emission tomography for identification of ruptured and high- risk coronary atherosclerotic plaques: a prospective clinical trial[J]. Lancet, 2014, 383(9918): 705-13. doi: 10.1016/S0140-6736(13)61754-7
    [29] Maria João Vidigal Ferreira MD P, Md MOS, Md RS, et al. Assessment of atherosclerotic plaque calcification using F18- NaF PET-CT[J]. J Nucl Cardiol, 2018, 25(5): 1733-41. doi: 10.1007/s12350-016-0776-9
    [30] Morbelli S, Fiz F, Piccardo A, et al. Divergent determinants of 18FNaF uptake and visible calcium deposition in large arteries: relationship with Framingham risk score[J]. Int J Cardiovasc Imaging, 2014, 30(2): 439-47. doi: 10.1007/s10554-013-0342-3
    [31] Fiz F, Piccardo A, Morbelli S, et al. Longitudinal analysis of atherosclerotic plaques evolution: an 18F-NaF PET/CT study[J]. J Nucl Cardiol, 2022, 29(4): 1713-23. doi: 10.1007/s12350-021-02556-3
    [32] Vengrenyuk Y, Carlier S, Xanthos S, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps[J]. Proc Natl Acad Sci USA, 2006, 103(40): 14678-83. doi: 10.1073/pnas.0606310103
    [33] Derlin T, Tóth Z, Papp L, et al. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study[J]. J Nucl Med, 2011, 52(7): 1020-7. doi: 10.2967/jnumed.111.087452
    [34] de Oliveira-Santos M, et al. Atherosclerotic plaque metabolism in high cardiovascular risk subjects-A subclinical atherosclerosis imaging study with 18F-NaF PET-CT[J]. Atherosclerosis, 2017, 260: 41-6. doi: 10.1016/j.atherosclerosis.2017.03.014
    [35] Quirce R, Martínez- Rodríguez I, Banzo I, et al. New insight of functional molecular imaging into the atheroma biology: 18F-NaF and 18F-FDG in symptomatic and asymptomatic carotid plaques after recent CVA. Preliminary results[J]. Clin Physiol Funct Imaging, 2016, 36(6): 499-503. doi: 10.1111/cpf.12254
    [36] Arai-Okuda H, Norikane T, Yamamoto Y, et al. 18F-FDG PET/CT in patients with polymyositis/dermatomyositis: correlation with serum muscle enzymes[J]. Eur J Hybrid Imaging, 2020, 4(1): 14. doi: 10.1186/s41824-020-00084-w
    [37] Vesey AT, Jenkins WSA, Irkle A, et al. 18F-fluoride and 18Ffluorodeoxyglucose positron emission tomography after transient ischemic attack or minor ischemic stroke: case-control study[J]. Circ Cardiovasc Imaging, 2017, 10(3): e004976. doi: 10.1161/CIRCIMAGING.116.004976
    [38] Fujimoto K, Norikane T, Yamamoto Y, et al. Association between carotid 18F-NaF and 18F- FDG uptake on PET/CT with ischemic vascular brain disease on MRI in patients with carotid artery disease[J]. Ann Nucl Med, 2019, 33(12): 907-15. doi: 10.1007/s12149-019-01403-3
    [39] Cocker MS, Spence JD, Hammond R, et al. 18F-NaF PET/CT identifies active calcification in carotid plaque[J]. JACC Cardiovasc Imaging, 2017, 10(4): 486-8. doi: 10.1016/j.jcmg.2016.03.005
    [40] Zhang Y, et al. Noninvasive assessment of carotid plaques calcification by 18F-sodium fluoride accumulation: correlation with pathology[J]. J Stroke Cerebrovasc Dis, 2018, 27(7): 1796-801. doi: 10.1016/j.jstrokecerebrovasdis.2018.02.011
    [41] Borja AJ, Bhattaru A, Rojulpote C, et al. Association between atherosclerotic cardiovascular disease risk score estimated by pooled cohort equation and coronary plaque burden as assessed by NaF-PET/CT[J]. Am J Nucl Med Mol Imaging, 2020, 10(6): 312-8.
    [42] Hop MD H, de Boer MD PSA, BSc MR, et al. 18F-sodium fluoride positron emission tomography assessed microcalcifications in culprit and non-culprit human carotid plaques[J]. J Nucl Cardiol, 2019, 26(4): 1064-75. doi: 10.1007/s12350-018-1325-5
    [43] Mechtouff L, Sigovan M, Costes N, et al. 18F-NaF PET- MRI: an innovative tool to assess carotid artery plaque vulnerability[J]. Eur J Neurol, 2018, 25(2): e18-e19.
    [44] Mechtouff L, Sigovan M, Douek P, et al. Simultaneous assessment of microcalcifications and morphological criteria of vulnerability in carotid artery plaque using hybrid 18F-NaF PET/MRI[J]. J Nucl Cardiol, 2022, 29(3): 1064-74. doi: 10.1007/s12350-020-02400-0
  • 加载中
计量
  • 文章访问数:  355
  • HTML全文浏览量:  283
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-15
  • 网络出版日期:  2023-01-18
  • 刊出日期:  2023-01-20

目录

    /

    返回文章
    返回