Advances in PET molecular imaging of Alzheimer's disease
-
摘要: 阿尔茨海默病(AD)是一种好发于老年人的神经退行性疾病,是痴呆最常见的原因,发病隐匿且临床表现缺乏特异性,早期诊断困难。目前,基于生物标志物的AT(N)诊断框架使AD诊断的准确性明显提高。随着学科交叉融合的广泛推进,分子影像学展现出巨大潜力,是未来医学影像发展的趋势。PET显像可以在细胞和分子水平对活体内AD的病理过程进行定位和定量,是诊断AD重要的影像学手段,针对AD葡萄糖代谢和病理机制的多种示踪剂的研发有助于更好地研究AD的发病本质。本综述将对以淀粉样蛋白、Tau蛋白、葡萄糖、神经炎症、突触密度、神经递质为靶标的PET显像在AD诊断中的研究进展进行归纳阐述。
-
关键词:
- 阿尔茨海默病 /
- 正电子发射断层显像术 /
- 分子影像学 /
- 生物标志物
Abstract: Alzheimer's disease (AD) is a neurodegenerative disease that occurs in the elderly and is the most common cause of dementia. The insidious onset and lack of specificity of clinical presentation make early diagnosis difficult. Currently, the biomarker-based AT(N) diagnostic framework has led to a significant improvement in the accuracy of AD diagnosis. With the extensive promotion of cross- fertilization of disciplines, molecular imaging shows great potential and is the future development trend of medical imaging. PET imaging can localize and quantify the pathological process of AD in vivo at the cellular and molecular levels, and is an important imaging tool for the diagnosis of AD. The development of multiple tracers targeting AD glucose metabolism and pathological mechanisms can help to better study the nature of AD pathogenesis. This review will summarize the research advances in PET imaging targeting amyloid, Tau protein, glucose, neuroinflammation, synaptic density, and neurotransmitters in the diagnosis of AD.-
Key words:
- Alzheimer's disease /
- positron-emission tomography /
- molecular imaging /
- biomarkers
-
[1] Alafuzoff I, Arzberger T, Al-Sarraj S, et al. Staging of neurofibrillary pathology in Alzheimer's disease: a study of the BrainNet Europe Consortium[J]. Brain Pathol Zurich Switz, 2008, 18(4): 484-96. [2] Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer's disease[J]. Lancet, 2021, 397(10284): 1577-90. doi: 10.1016/S0140-6736(20)32205-4 [3] Varesi A, Pierella E, Romeo M, et al. The potential role of gut Microbiota in Alzheimer's disease: from diagnosis to treatment[J]. Nutrients, 2022, 14(3): 668. doi: 10.3390/nu14030668 [4] Shi JM, He X, Lian HJ, et al. Tibetan medicine RNSP in treatment of Alzheimer disease[J]. Int J Clin Exp Med, 2015, 8(11): 19874-80. [5] Politis M, Piccini P. Positron emission tomography imaging in neurological disorders[J]. J Neurol, 2012, 259(9): 1769-80. doi: 10.1007/s00415-012-6428-3 [6] Webers A, Heneka MT, Gleeson PA. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer's disease[J]. Immunol Cell Biol, 2020, 98 (1): 28-41. doi: 10.1111/imcb.12301 [7] Kadir A, et al. Dynamic changes in PET amyloid and FDG imaging at different stages of Alzheimer's disease[J]. Neurobiol Aging, 2012, 33(1): 198. e1-198. e14. [8] Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B[J]. Ann Neurol, 2004, 55(3): 306-19. doi: 10.1002/ana.20009 [9] Arnold SE, Hyman BT, Flory J, et al. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease[J]. Cereb Cortex, 1991, 1(1): 103-16. doi: 10.1093/cercor/1.1.103 [10] Thal DR, Rüb U, Orantes M, et al. Phases of A beta-deposition in the human brain and its relevance for the development of AD[J]. Neurology, 2002, 58(12): 1791-800. doi: 10.1212/WNL.58.12.1791 [11] Villemagne VL, Doré V, Burnham SC, et al. Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions[J]. Nat Rev Neurol, 2018, 14(4): 225-36. doi: 10.1038/nrneurol.2018.9 [12] Choi SR, Schneider JA, Bennett DA, et al. Correlation of amyloid PET ligand florbetapir F18 binding with Aβ aggregation and neuritic plaque deposition in postmortem brain tissue[J]. Alzheimer Dis Assoc Disord, 2012, 26(1): 8-16. doi: 10.1097/WAD.0b013e31821300bc [13] Wong DF, Rosenberg PB, Zhou Y, et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir[corrected]F18)[J]. J Nucl Med, 2010, 51(6): 913-20. doi: 10.2967/jnumed.109.069088 [14] Klunk WE, Mathis CA, Price JC, et al. Two-year follow-up of amyloid deposition in patients with Alzheimer's disease[J]. Brain, 2006, 129(11): 2805-7. doi: 10.1093/brain/awl281 [15] Johnson KA, Sperling RA, Gidicsin CM, et al. Florbetapir (f18-av-45) pet to assess amyloid burden in alzheimer' s disease dementia, mild cognitive impairment, and normal aging[J/OL]. Alzheimer's & Dementia, 2013, 9(5). https://alz-journals.onlinelibrary.wiley.com/doi/10.1016/j.jalz.2012.10.007. [16] Payoux P, Delrieu J, Gallini A, et al. Cognitive and functional patterns of nondemented subjects with equivocal visual amyloid PET findings[J]. Eur J Nucl Med Mol Imaging, 2015, 42(9): 1459-68. doi: 10.1007/s00259-015-3067-9 [17] Lee VMY, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies[J]. Annu Rev Neurosci, 2001, 24: 1121-59. doi: 10.1146/annurev.neuro.24.1.1121 [18] Buée L, Bussière T, Buée- Scherrer V, et al. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders11These authors contributed equally to this work[J]. Brain Res Rev, 2000, 33(1): 95-130. doi: 10.1016/S0165-0173(00)00019-9 [19] Buchhave P, Minthon L, Zetterberg H, et al. Cerebrospinal fluid levels of β-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia[J]. Arch Gen Psychiatry, 2012, 69(1): 98-106. doi: 10.1001/archgenpsychiatry.2011.155 [20] Bischof GN, et al. Tau-imaging in neurodegeneration[J]. Methods, 2017, 130: 114-23. doi: 10.1016/j.ymeth.2017.08.003 [21] Wolters EE, Dodich A, Boccardi M, et al. Clinical validity of increased cortical uptake of[18F]flortaucipir on PET as a biomarker for Alzheimer's disease in the context of a structured 5-phase biomarker development framework[J]. Eur J Nucl Med Mol Imaging, 2021, 48(7): 2097-109. doi: 10.1007/s00259-020-05118-w [22] Chiotis K, Dodich A, Boccardi M, et al. Clinical validity of increased cortical binding of tau ligands of the THK family and PBB3 on PET as biomarkers for Alzheimer's disease in the context of a structured 5-phase development framework[J]. Eur J Nucl Med Mol Imaging, 2021, 48(7): 2086-96. doi: 10.1007/s00259-021-05277-4 [23] Groot C, Villeneuve S, Smith R, et al. Tau PET imaging in neurodegenerative disorders[J]. J Nucl Med, 2022, 63(Suppl 1): 20S-6S. [24] Ossenkoppele R, et al. Tau biomarkers in Alzheimer's disease: towards implementation in clinical practice and trials[J]. Lancet Neurol, 2022, 21(8): 726-34. doi: 10.1016/S1474-4422(22)00168-5 [25] Berron D, Vogel JW, Insel PS, et al. Early stages of tau pathology and its associations with functional connectivity, atrophy and memory[J]. Brain, 2021, 144(9): 2771-83. doi: 10.1093/brain/awab114 [26] Vogel JW, Young AL, Oxtoby NP, et al. Four distinct trajectories of tau deposition identified in Alzheimer's disease[J]. Nat Med, 2021, 27(5): 871-81. doi: 10.1038/s41591-021-01309-6 [27] Murray ME, et al. Neuropathologically defined subtypes of Alzheimer's disease with distinct clinical characteristics: a retrospective study[J]. Lancet Neurol, 2011, 10(9): 785-96. doi: 10.1016/S1474-4422(11)70156-9 [28] Ossenkoppele R, Smith R, Mattsson-Carlgren N, et al. Accuracy of tau positron emission tomography as a prognostic marker in preclinical and prodromal alzheimer disease: a head-to-head comparison against amyloid positron emission tomography and magnetic resonance imaging[J]. JAMA Neurol, 2021, 78(8): 961-71. doi: 10.1001/jamaneurol.2021.1858 [29] Pichet Binette A, et al. Amyloid and tau pathology associations with personality traits, neuropsychiatric symptoms, and cognitive lifestyle in the preclinical phases of sporadic and autosomal dominant Alzheimer's disease[J]. Biol Psychiatry, 2021, 89(8): 776-85. doi: 10.1016/j.biopsych.2020.01.023 [30] Pontecorvo MJ, Investigators FT1A, Devous MD, et al. A multicentre longitudinal study of flortaucipir (18F) in normal ageing, mild cognitive impairment and Alzheimer's disease dementia[J]. Brain, 2019, 142(6): 1723-35. doi: 10.1093/brain/awz090 [31] La Joie R, Visani AV, Baker SL, et al. Prospective longitudinal atrophy in Alzheimer's disease correlates with the intensity and topography of baseline tau-PET[J]. Sci Transl Med, 2020, 12(524): eaau5732. doi: 10.1126/scitranslmed.aau5732 [32] Leuzy A, Pascoal TA, Strandberg O, et al. A multicenter comparison of[18F]flortaucipir, [18F]RO948, and[18F]MK6240 tau PET tracers to detect a common target ROI for differential diagnosis[J]. Eur J Nucl Med Mol Imaging, 2021, 48(7): 2295-305. doi: 10.1007/s00259-021-05401-4 [33] Frisoni GB Jr, et al. Strategic roadmap for an early diagnosis of Alzheimer's disease based on biomarkers[J]. Lancet Neurol, 2017, 16(8): 661-76. doi: 10.1016/S1474-4422(17)30159-X [34] Mosconi L, Tsui WH, Herholz K, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias[J]. J Nucl Med, 2008, 49 (3): 390-8. doi: 10.2967/jnumed.107.045385 [35] Diehl-Schmid J, Neumann M, Laws S, et al. Frontotemporale lobärdegenerationen[J]. Fortschr Neurol Psychiatr, 2009, 77(5): 295-304. doi: 10.1055/s-0028-1109107 [36] Gjerum L, et al. A visual rating scale for cingulate island sign on 18F-FDG-PET to differentiate dementia with Lewy bodies and Alzheimer's disease[J]. J Neurol Sci, 2020, 410: 116645. doi: 10.1016/j.jns.2019.116645 [37] Shimizu S, Hanyu HR, Hirao K, et al. Value of analyzing deep gray matter and occipital lobe perfusion to differentiate dementia with Lewy bodies from Alzheimer's disease[J]. Ann Nucl Med, 2008, 22 (10): 911-6. doi: 10.1007/s12149-008-0193-5 [38] Pascoal TA, Benedet AL, Ashton NJ, et al. Microglial activation and tau propagate jointly across Braak stages[J]. Nat Med, 2021, 27 (9): 1592-9. doi: 10.1038/s41591-021-01456-w [39] Minter MR, Taylor JM, Crack PJ. The contribution of neuroinflammation to amyloid toxicity in Alzheimer's disease[J]. J Neurochem, 2016, 136(3): 457-74. doi: 10.1111/jnc.13411 [40] Heneka MT, et al. Neuroinflammation in Alzheimer's disease[J]. Lancet Neurol, 2015, 14(4): 388-405. doi: 10.1016/S1474-4422(15)70016-5 [41] Fan Z, Brooks DJ, Okello A, et al. An early and late peak in microglial activation in Alzheimer's disease trajectory[J]. Brain, 2017, 140(3): 792-803. [42] Masdeu JC, Pascual B, Fujita M. Imaging neuroinflammation in neurodegenerative disorders[J]. J Nucl Med, 2022, 63(Suppl 1): 45S-52S. [43] Owen DR, Yeo AJ, Gunn RN, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28[J]. J Cereb Blood Flow Metab, 2012, 32(1): 1-5. doi: 10.1038/jcbfm.2011.147 [44] Zanotti-Fregonara P, Pascual B, Veronese M, et al. Head-to-head comparison of 11C-PBR28 and 11C-ER176 for quantification of the translocator protein in the human brain[J]. Eur J Nucl Med Mol Imaging, 2019, 46(9): 1822-9. doi: 10.1007/s00259-019-04349-w [45] Fan Z. Influence of microglial activation on neuronal function in Alzheimer's and Parkinson's disease dementia[J]. Alzheimer's Dement, 2015, 11(6): 608-21. e7. doi: 10.1016/j.jalz.2014.06.016 [46] Kreisl WC, et al. 11C-PBR28 binding to translocator protein increases with progression of Alzheimer's disease[J]. Neurobiol Aging, 2016, 44: 53-61. doi: 10.1016/j.neurobiolaging.2016.04.011 [47] Tondo G, Iaccarino L, Caminiti SP, et al. The combined effects of microglia activation and brain glucose hypometabolism in earlyonset Alzheimer's disease[J]. Alzheimers Res Ther, 2020, 12(1): 50. doi: 10.1186/s13195-020-00619-0 [48] Ismail R, Parbo P, Madsen LS, et al. The relationships between neuroinflammation, beta-amyloid and tau deposition in Alzheimer's disease: a longitudinal PET study[J]. J Neuroinflammation, 2020, 17(1): 151. doi: 10.1186/s12974-020-01820-6 [49] Gouilly D, Saint-Aubert L, Ribeiro M, et al. Neuroinflammation PET imaging of the translocator protein (TSPO) in Alzheimer's disease: an update[J]. Eur J Neuroscience, 2022, 55(5): 1322-43. doi: 10.1111/ejn.15613 [50] Zou J, et al. Microglial activation, but not tau pathology, is independently associated with amyloid positivity and memory impairment[J]. Neurobiol Aging, 2020, 85: 11-21. doi: 10.1016/j.neurobiolaging.2019.09.019 [51] Mecca AP, O'Dell RS, Sharp ES, et al. Synaptic density and cognitive performance in Alzheimer's disease: a PET imaging study with[11 C]UCB-J[J]. Alzheimers Dement, 2022: 2022Feb17; 10.1002/alz. 12582. doi: 10.1002/alz.12582 [52] Colom-Cadena M, Spires-Jones T, Zetterberg H, et al. The clinical promise of biomarkers of synapse damage or loss in Alzheimer's disease[J]. Alzheimers Res Ther, 2020, 12(1): 21. doi: 10.1186/s13195-020-00588-4 [53] Wiers CE, Shokri-Kojori E, Wong CT, et al. Cannabis abusers show hypofrontality and blunted brain responses to a stimulant challenge in females but not in males[J]. Neuropsychopharmacology, 2016, 41(10): 2596-605. doi: 10.1038/npp.2016.67 [54] Bajjalieh SM, Peterson K, Linial M, et al. Brain contains two forms of synaptic vesicle protein 2[J]. Proc Natl Acad Sci USA, 1993, 90 (6): 2150-4. doi: 10.1073/pnas.90.6.2150 [55] Bajjalieh SM, Peterson K, Shinghal R, et al. SV2, a brain synaptic vesicle protein homologous to bacterial transporters[J]. Science, 1992, 257(5074): 1271-3. doi: 10.1126/science.1519064 [56] Huttner WB, Schiebler W, Greengard P, et al. Synapsin I (protein I), a nerve terminal- specific phosphoprotein. Ⅲ. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation[J]. J Cell Biol, 1983, 96(5): 1374-88. doi: 10.1083/jcb.96.5.1374 [57] Danish A, Namasivayam V, Schiedel AC, et al. Interaction of approved drugs with synaptic vesicle protein 2A[J]. Arch Pharm (Weinheim), 2017, 350(3/4). DOI: 10.1002/ardp.201700003. [58] Nabulsi NB, Mercier J, Holden D, et al. Synthesis and preclinical evaluation of 11C-UCB-J as a PET tracer for imaging the synaptic vesicle glycoprotein 2A in the brain[J]. J Nucl Med, 2016, 57(5): 777-84. doi: 10.2967/jnumed.115.168179 [59] Cai ZX, Li SY, Zhang WJ, et al. Synthesis and preclinical evaluation of an 18F-labeled synaptic vesicle glycoprotein 2A PET imaging probe: [18F]SynVesT-2[J]. ACS Chem Neurosci, 2020, 11 (4): 592-603. doi: 10.1021/acschemneuro.9b00618 [60] Chen MK, Mecca AP, Naganawa M, et al. Assessing synaptic density in alzheimer disease with synaptic vesicle glycoprotein 2A positron emission tomographic imaging[J]. JAMA Neurol, 2018, 75 (10): 1215-24. doi: 10.1001/jamaneurol.2018.1836 [61] Lee SH, et al. Neuromodulation of brain states[J]. Neuron, 2012, 76 (1): 209-22. doi: 10.1016/j.neuron.2012.09.012 [62] Hodson R. Alzheimer's disease[J]. Nature, 2018, 559(7715): S1. doi: 10.1038/d41586-018-05717-6 [63] Aghourian M, Legault-Denis C, Soucy JP, et al. Quantification of brain cholinergic denervation in Alzheimer's disease using PET imaging with[18F]-FEOBV[J]. Mol Psychiatry, 2017, 22(11): 1531-8. doi: 10.1038/mp.2017.183 [64] McKeith I. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase Ⅲ, multicentre study[J]. Lancet Neurol, 2007, 6(4): 305-13. doi: 10.1016/S1474-4422(07)70057-1 [65] McCleery J, Morgan S, Bradley KM, et al. Dopamine transporter imaging for the diagnosis of dementia with Lewy bodies[J]. Cochrane Database Syst Rev, 2015, 1(1): CD010633. [66] Johnson KA, et al. O4-06-06 Combined dopamine transporter and FDG pet in DLB, AD, and PD[J]. Neurobiol Aging, 2004, 25: S86-7. [67] Mecca AP, McDonald JW, Michalak HR, et al. p1-469: pet imaging of metabotropic glutamate receptor 5 binding in Alzheimer's disease[J]. Alzheimer's Dement, 2018, 14(7): 9. [68] Mecca AP. AD molecular: molecular imaging of Alzheimer's disease: pet imaging of neurotransmitter systems[M]. //Progress in Molecular Biology and Translational Science. Amsterdam: Elsevier, 2019: 139-165. [69] Snowden SG, Ebshiana AA, Hye A, et al. Neurotransmitter imbalance in the brain and Alzheimer's disease pathology[J]. J Alzheimers Dis, 2019, 72(1): 35-43. doi: 10.3233/JAD-190577
点击查看大图
计量
- 文章访问数: 392
- HTML全文浏览量: 551
- PDF下载量: 86
- 被引次数: 0