Research progress on normal reference value range and clinical applications of ultrasonic myocardial work parameters
-
摘要: 心肌做功(MW)技术通过结合二维斑点追踪超声心动图与无创肱动脉血压得到左室压力应变环,产生四个主要的参数评价心肌收缩功能。相比于目前临床上广泛应用的左室射血分数,MW在应变基础上具有更好地减少负荷对心肌功能评估的影响、提供整体与局部心肌功能信息和早期识别心血管疾病心肌功能受损情况等特点。本文首先介绍了MW原理及主要参数,归纳不同人群中MW参数正常参考值范围研究结果,对MW应用于临床心血管疾病心肌收缩功能评价的代表性研究成果做出综述,最后分析了MW的局限性,并对该技术良好的应用前景作出展望。Abstract: Myocardial work (MW) technology obtains the left ventricular pressure-strain loop by combining two-dimensional speckle tracking echocardiography with noninvasive brachial artery blood pressure, and produces four main parameters to evaluate myocardial systolic function. Compared with the left ventricular ejection fraction, which is widely used in clinic at present, MW has the characteristics of better reducing the impact of load on the evaluation of myocardial function on the basis of strain, providing global and segmental myocardial function information, and early identifying the damage of myocardial function in cardiovascular diseases. This paper first introduces the principle and main parameters of MW, summarizes the research results of the normal reference value range of MW parameters in different populations, then the representative research results of MW applied to the evaluation of myocardial systolic function in clinical cardiovascular diseases are summarized, and finally analyzes the limitations of MW, as well as prospects the good application prospect of MW technology.
-
表 1 不同健康人群中对MW参数正常值范围
Table 1. Normal value range of MW parameters in different healthy populations.
研究者及年份 研究人群 人群来源 样本量(n) 男性(%) 年龄(岁) 性别/总人群 MW主要参数 研究差异(性别和年龄) GWI(mmHg%) GCW(mmHg%) GWW(mmHg%) GWE(%) Manganaro[23] (2019) 欧洲受试者≥25岁 由欧洲心血管影像协会(EACVI)招募 226 37.6 45±13 总 1896±308 2232±331 78.5 (53~122.2) 96 (94~97) 男性相比于女性有显着较低的GWE值和较高的GWW值。同时认为女性的GWI和GCW随着年龄的增长而显着增加。 男 1849 ± 295 2228± 295 94 (61.5~130.5) 95 (94~97) 女 1924±313 2234 ± 352 74 (49.5~111) 96 (94~97) Galli[22] ≥18岁 Rennes university hospital健康队列的受试者 115 67 36.3(18~69) 总 1926±247 2224±229 61~123 94~97 女性的GWI、GCW显著高于男性(P>0.05)。4个MW主要参数与年龄没有相关性。 男 1874±232 2194±207 91 (95% CI:61~123) 96 (94~97) 女 2031±247 2289±261 87 (95% CI:60~122) 96 (94~97) Morbach[29](2020) 德国维尔茨堡市的人口年龄在30~79岁之间的人群 心力衰竭A/B阶段的特征和病程以及进展的决定因素(STAAB)队列人群 779 41 49±10 总 2209 ± 307 2430±351 74 (95% CI:54~101) 96(95~97) 在45岁之前,GCW、GWW和GWE水平与性别无关。当年龄>45岁,GWI和GWE随年龄增长而增加,且女性GWI高于男性。 Truong[31] (2021) >18岁 13项数据集的健康受试者(Meta分析) 1665 38 年龄范围:20~53 总 2010 (95% CI:1907-2113) 2278 (95% CI:2186-2369) 80 (95% CI:73~87) 96 (95% CI:96~96) GWI和GWW与性别有相关性,而GWE与年龄和性别都相关(P<0.05)。 Olsen[30] (2022) 哥本哈根市心脏研究(CCHS)的健康人群 哥本哈根市心脏研究(CCHS) 1827 39 中位年龄:45 总 2118 (95% CI:1576-2661) 2262 (95% CI:1708-2816) 64 (95% CI:22~159) 97.1 (93.0~99.0) 对于男性,只有GCW随年龄增加,而其他参数不随年龄变化。对于女性而言,GCW随年龄增长呈线性增加,而GWI、GWW和GWE随年龄呈曲线变化。因此年轻参与者的GWI增加,老年参与者的GWW增加,GWE一致下降。 男 2062 (95% CI:1534-2590) 2229 (95% CI:1690-2767) 60 (95% CI:20~153) 97.2 (95% CI:93.2~99.1) 女 2155 (95% CI:1615-2694) 2283 (95% CI:1723-2843) 68 (95% CI:24~168) 97.0 (95% CI:92.9~98.9) Tretter[24] (2021) 青少年 Cincinnati Children's Hospital Medical Center 52 62 14.5±2.0 总 1802.0±264.4 2054.5±297.3 83.8±28.1 95.5±1.1 多变量分析中,MW的各个参数(GWI、GCW、GWW、GWE)与年龄、性别都没有相关性(P>0.05)。 男 1776.8 ± 262.7 2024.0 ± 283.5 82.7± 26.9 95.6± 1.1 女 1842.2 ± 268.9 2103.4 ± 319.5 85.6 ± 30.4 95.4 ± 1.1 Sabatino[27] (2022) 儿童与青少年 涉及三个儿科实验室的多中心研究 150 61 10.6±4.5 总 1760±228 2141(95% CI:2115~2204) 69(95% CI:68~80) 96 (95.9~96.3) MW的各个参数(GWI、GCW、GWW、GWE)与年龄、性别都没有相关性(P>0.05)。 男 1767±212 2159 (95% CI:2089~2201) 63 (95% CI:63~78) 96 (95.9~96.5) 女 1748± 252 2111(95% CI:2106~2259) 71 (95% CI:70~90) 96 (95.5~96.3) Pham[25] (2021) 儿童 Tam Duc Heart Hospital 212 47 9(6~12) 总 1688±219 1959±207 61.1±30.9 96.5±1.4 不同年龄组和性别与MW指数差异无统计学意义(P>0.05)。 男 1699 ± 211 1961 ± 206 60.4 ± 31.9 96.5 ± 1.4 女 1679 ± 226 1958 ± 210 61.6 ± 30.1 96.4 ± 1.4 Cui[32] (2022) 儿童 中国医学科学院阜外医院 183 52.5 10(6~13) 总 1448.7±265.0 1859.8±290.7 54.0(95% CI:33.0~82.0) 97.0 (95.0~99.0) 男性GWI、GCW均高于女性(P<0.01),GWW与GWE在性别中差异无统计学意义。4个MW主要参数与年龄密切相关,且呈现不同的趋势(P<0.05)。经体表面积调整过的GWI(体表面积)与GCW(体表面积)与年龄负相关(P<0.001)。 Cui[20](2022) 1~18岁 183 52.5 男 1572.5±250.2 1944.3±299.2 55.0(95% CI:35.3~83.8) 97.0 (95.0~98.0) 女 1312.2±208.7 1766.6±251.5 51.0(95% CI:32.0~79.0) 96.0 (95.0~98.0) 林静茹[28] (2020) ≥18岁 中国医学科学院阜外医院 64 48.4 51±14 总 2014±245 2273±287 99(95% CI:70~121) 95(94~96) 男性静息状态GWW值大于女性,GWI、GCW和GWE值小于女性,但差异均无统计学意义(P>0.05)。GWI、GCW和GWW值随着年龄增长有升高趋势,但差异均无统计学意义(P>0.05);≥60岁GWE值低于18~44岁和45~59岁,但差异均无统计学意义(P>0.05)。 男 1998±225 2241±235 102(95% CI:86~132) 94(93~96) 女 2029±266 2302±330 91(95% CI:69~119) 95(94~96) 丁雪晏[26] (2021) ≥18岁 首都医科大学附属北京朝阳医院 64 48.4 52.1±10.7 总 2065±298 2255±302 89(56.5~112.5) 96(95~97) 女性GWI及GCW均高于男性(均有P<0.05),GWW、GWE性别差异无统计学意义(P>0.05)。GWI、GCW、GWW及GWE与年龄无相关性(均有P>0.05)。 男 1952±232 2137±216 85.5(55.8~101) 96(95~97) 女 2168±336 2361±349 96±46 95(94~97) -
[1] Mirro MJ, Rogers EW, Weyman AE, et al. Angular displacement of the papillary muscles during the cardiac cycle[J]. Circulation, 1979, 60(2): 327-33. doi: 10.1161/01.CIR.60.2.327 [2] Trainini J, Lowenstein J, Beraudo M, et al. Myocardial torsion and cardiac fulcrum[J]. Morphologie, 2021, 105(348): 15-23. doi: 10.1016/j.morpho.2020.06.010 [3] Monge García MI, Jian ZP, Settels JJ, et al. Determinants of left ventricular ejection fraction and a novel method to improve its assessment of myocardial contractility[J]. Ann Intensive Care, 2019, 9(1): 48. doi: 10.1186/s13613-019-0526-7 [4] Konstam MA, Abboud FM. Ejection fraction: misunderstood and overrated (changing the paradigm in categorizing heart failure)[J]. Circulation, 2017, 135(8): 717-9. doi: 10.1161/CIRCULATIONAHA.116.025795 [5] Reisner SA, Lysyansky P, Agmon Y, et al. Global longitudinal strain: a novel index of left ventricular systolic function[J]. J Am Soc Echocardiogr, 2004, 17(6): 630-3. doi: 10.1016/j.echo.2004.02.011 [6] Tröbs SO, Prochaska JH, Schwuchow-Thonke S, et al. Association of global longitudinal strain with clinical status and mortality in patients with chronic heart failure[J]. JAMA Cardiol, 2021, 6(4): 448-56. doi: 10.1001/jamacardio.2020.7184 [7] Mor-Avi V, Lang RM, Badano LP, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications[J]. JAmSoc Echocardiogr, 2011, 24(3): 277-313. [8] Boe E, Russell K, Eek C, et al. Non-invasive myocardial work index identifies acute coronary occlusion in patients with non-ST-segment elevation-acute coronary syndrome[J]. Eur Heart J Cardiovasc Imaging, 2015, 16(11): 1247-55. doi: 10.1093/ehjci/jev078 [9] Boe E, Skulstad H, Smiseth OA. Myocardial work by echocardiography: a novel method ready for clinical testing[J]. Eur Heart J Cardiovasc Imaging, 2018, 20(1): 18-20. [10] Grapsa J. Left ventricular ejection fraction and global longitudinal strain: prognostic when not load dependent?[J]. J Am Coll Cardiol, 2018, 72(9): 1065-6. doi: 10.1016/j.jacc.2018.05.070 [11] Langeland S, D'Hooge J, Wouters PF, et al. Experimental validation of a new ultrasound method for the simultaneous assessment of radial and longitudinal myocardial deformation independent of insonation angle[J]. Circulation, 2005, 112(14): 2157-62. doi: 10.1161/CIRCULATIONAHA.105.554006 [12] Suga H. Cardiac energetics: from E(max) to pressure- volume area [J]. Clin Exp Pharmacol Physiol, 2003, 30(8): 580-5. doi: 10.1046/j.1440-1681.2003.03879.x [13] Suga H. Left ventricular time-varying pressure-volume ratio in systole as an index of myocardial inotropism[J]. Jpn Heart J, 1971, 12(2): 153-60. doi: 10.1536/ihj.12.153 [14] Suga H, Igarashi Y, Yamada O, et al. Cardiac oxygen consumption and systolic pressure volume area[M]//Controversial issues in cardiac pathophysiology. Heidelberg: Steinkopff, 1986: 39-50. [15] Russell K, Eriksen M, Aaberge L, et al. A novel clinical method for quantification of regional left ventricular pressure-strain loop area: a non-invasive index of myocardial work[J]. Eur Heart J, 2012, 33(6): 724-33. doi: 10.1093/eurheartj/ehs016 [16] Jaglan A, Roemer S, Khandheria B. Myocardial work index: it works [J]. Eur Heart J Cardiovasc Imaging, 2020, 21(9). [17] Larsen CK, Aalen JM, Stokke C, et al. Regional myocardial work by cardiac magnetic resonance and non-invasive left ventricular pressure: a feasibility study in left bundle branch block[J]. Eur Heart J Cardiovasc Imaging, 2019, 21(2): 143-53. [18] van der Bijl P, Kostyukevich M, El Mahdiui M, et al. A roadmap to assess myocardial work: from theory to clinical practice[J]. JACC Cardiovasc Imaging, 2019, 12(12): 2549-54. doi: 10.1016/j.jcmg.2019.05.028 [19] Russell K, Eriksen M, Aaberge L, et al. Assessment of wasted myocardial work: a novel method to quantify energy loss due to uncoordinated left ventricular contractions[J]. Am J Physiol Heart Circ Physiol, 2013, 305(7): H996-H1003. doi: 10.1152/ajpheart.00191.2013 [20] Tadic M, Cuspidi C, Pencic B, et al. Association between myocardial work and functional capacity in patients with arterial hypertension: an echocardiographic study[J]. Blood Press, 2021, 30(3): 188-95. doi: 10.1080/08037051.2021.1902267 [21] Chan J, Edwards NFA, Khandheria BK, et al. A new approach to assess myocardial work by non-invasive left ventricular pressurestrain relations in hypertension and dilated cardiomyopathy[J]. Eur Heart J Cardiovasc Imaging, 2018, 20(1): 31-9. [22] Galli E, John-Matthwes B, Rousseau C, et al. Echocardiographic reference ranges for myocardial work in healthy subjects: a preliminary study[J]. Echocardiography, 2019, 36(10): 1814-24. doi: 10.1111/echo.14494 [23] Manganaro R, Marchetta S, Dulgheru R, et al. Echocardiographic reference ranges for normal non-invasive myocardial work indices: results from the EACVI NORRE study[J]. Eur Heart J Cardiovasc Imaging, 2018, 20(5): 582-90. [24] Tretter JT, Pradhan S, Truong VT, et al. Non-invasive left ventricular myocardial work indices in healthy adolescents at rest[J]. Int J Cardiovasc Imaging, 2021, 37(8): 2429-38. doi: 10.1007/s10554-021-02218-y [25] Pham TTM, Truong VT, Vu PN, et al. Echocardiographic reference ranges of non- invasive myocardial work indices in children[J]. Pediatr Cardiol, 2022, 43(1): 82-91. doi: 10.1007/s00246-021-02695-x [26] 丁雪晏, 李一丹, 蔡绮哲, 等. 超声心动图左室压力-应变环评价正常成年人心肌做功[J]. 中国超声医学杂志, 2021, 37(6): 655-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCY202106018.htm [27] Sabatino J, Leo I, Strangio A, et al. Echocardiographic normal reference ranges for non-invasive myocardial work parameters in pediatric age: results from an international multi-center study[J]. Front Cardiovasc Med, 2022, 9: 792622. doi: 10.3389/fcvm.2022.792622 [28] 林静茹, 刘梦怡, 李晓宁, 等. 正常成年人静息及负荷状态下采用超声心动图无创评估心肌做功参数初步探究[J]. 中国循环杂志, 2020, 35 (12): 1216-22. doi: 10.3969/j.issn.1000-3614.2020.12.010 [29] Morbach C, Sahiti F, Tiffe T, et al. Myocardial work-correlation patterns and reference values from the population- based STAAB cohort study[J]. PLoS One, 2020, 15(10): e0239684. doi: 10.1371/journal.pone.0239684 [30] Olsen FJ, Skaarup KG, Lassen MCH, et al. Normal values for myocardial work indices derived from pressure-strain loop analyses: from the CCHS[J]. Circ Cardiovasc Imaging, 2022, 15(5): e013712. [31] Truong VT, Vo HQ, Ngo TNM, et al. Normal ranges of global left ventricular myocardial work indices in adults: a Meta-analysis[J]. J AmSoc Echocardiogr, 2022, 35(4): 369-77.e8. doi: 10.1016/j.echo.2021.11.010 [32] Cui CY, Zheng Q, Li YN, et al. Reference values of noninvasive myocardial work indices measured by echocardiography in healthy children[J]. Front Pediatr, 2022, 10: 792526. doi: 10.3389/fped.2022.792526 [33] Kuznetsova T, D'hooge J, Kloch-Badelek M, et al. Impact of hypertension on ventricular- arterial coupling and regional myocardial work at rest and during isometric exercise[J]. J Am Soc Echocardiogr, 2012, 25(8): 882-90. doi: 10.1016/j.echo.2012.04.018 [34] Loncaric F, Marciniak M, Nunno L, et al. Distribution of myocardial work in arterial hypertension: insights from non-invasive left ventricular pressure-strain relations[J]. Int J Cardiovasc Imaging, 2021, 37(1): 145-54. doi: 10.1007/s10554-020-01969-4 [35] Huang J, Yang C, Yan ZN, et al. Global myocardial work: a new way to detect subclinical myocardial dysfunction with normal left ventricle ejection fraction in essential hypertension patients: compared with myocardial layer-specific strain analysis[J]. Echocardiography, 2021, 38(6): 850-60. doi: 10.1111/echo.15063 [36] Tadic M, Cuspidi C, Saeed S, et al. The influence of left ventricular geometry on myocardial work in essential hypertension[J]. J Hum Hypertens, 2022, 36(6): 524-30. doi: 10.1038/s41371-021-00543-2 [37] 林曼欣, 吴林, 盛琴慧. 心肌病的分类及进展回顾[J]. 中国心血管杂志, 2018, 23(1): 81-6. doi: 10.3969/j.issn.1007-5410.2018.01.019 [38] 中华心血管病杂志编辑委员会心肌炎心肌病对策专题组. 关于成人急性病毒性心肌炎诊断参考标准和采纳世界卫生组织及国际心脏病学会联合会工作组关于心肌病定义和分类的意见[J]. 中华心血管病杂志, 1999, 27(6): 307-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXX199906000.htm [39] Centurión OA, Alderete JF, Torales JM, et al. Myocardial fibrosis as a pathway of prediction of ventricular arrhythmias and sudden cardiac death in patients with nonischemic dilated cardiomyopathy [J]. Crit Pathw Cardiol, 2019, 18(2): 89-97. doi: 10.1097/HPC.0000000000000171 [40] Cui CY, Liu L, Li YN, et al. Left ventricular pressure- strain loopbased quantitative examination of the global and regional myocardial work of patients with dilated cardiomyopathy[J]. Ultrasound Med Biol, 2020, 46(10): 2834-45. doi: 10.1016/j.ultrasmedbio.2020.06.008 [41] Galli E, Vitel E, Schnell F, et al. Myocardial constructive work is impaired in hypertrophic cardiomyopathy and predicts left ventricular fibrosis[J]. Echocardiography, 2019, 36(1): 74-82. doi: 10.1111/echo.14210 [42] Cui CY, Li YN, Liu YY, et al. Association between echocardiographic non-invasive myocardial work indices and myocardial fibrosis in patients with dilated cardiomyopathy[J]. Front Cardiovasc Med, 2021, 8: 704251. doi: 10.3389/fcvm.2021.704251 [43] Hiemstra YL, van der Bijl P, el Mahdiui M, et al. Myocardial work in nonobstructive hypertrophic cardiomyopathy: implications for outcome[J]. JAmSoc Echocardiogr, 2020, 33(10): 1201-8. [44] Gonçalves AV, Rosa SA, Branco L, et al. Myocardial work is associated with significant left ventricular myocardial fibrosis in patients with hypertrophic cardiomyopathy[J]. Int J Cardiovasc Imaging, 2021, 37(7): 2237-44. doi: 10.1007/s10554-021-02186-3 [45] 胡大一. 冠心病诊断与治疗研究进展[J]. 中华心血管病杂志, 2003, 31 (11): 806-11. doi: 10.3760/j:issn:0253-3758.2003.11.002 [46] Lustosa RP, Fortuni F, van der Bijl P, et al. Changes in global left ventricular myocardial work indices and stunning detection 3 months after ST- segment elevation myocardial infarction[J]. Am J Cardiol, 2021, 157: 15-21. doi: 10.1016/j.amjcard.2021.07.012 [47] Lustosa RP, Fortuni F, van der Bijl P, et al. Left ventricular myocardial work in the culprit vessel territory and impact on left ventricular remodelling in patients with ST-segment elevation myocardial infarction after primary percutaneous coronary intervention[J]. Eur Heart J Cardiovasc Imaging, 2020, 22(3): 339-47. [48] Butcher SC, Lustosa RP, Abou R, et al. Prognostic implications of left ventricular myocardial work index in patients with ST-segment elevation myocardial infarction and reduced left ventricular ejection fraction[J]. Eur Heart J Cardiovasc Imaging, 2021, 23(5): 699-707. [49] 中华医学会心电生理和起搏分会, 中国医师协会心律学专业委员会, 华伟, 等. 心脏再同步治疗慢性心力衰竭的中国专家共识(2021年修订版)[J]. 中华心律失常学杂志, 2021, 25(6): 465-78. doi: 10.3760/cma.j.cn113859-20210901-00177 [50] 郭晓荣, 顾翔. 心脏再同步治疗术后管理的新进展[J]. 中华心律失常学杂志, 2018, 22(1): 80-2. [51] Galli E, Leclercq C, Hubert A, et al. Role of myocardial constructive work in the identification of responders to CRT[J]. Eur Heart J Cardiovasc Imaging, 2017, 19(9): 1010-8. [52] Galli E, Hubert A, Le Rolle V, et al. Myocardial constructive work and cardiac mortality in resynchronization therapy candidates[J]. AmHeart J, 2019, 212(1): 53-63. [53] Prinzen FW, Lumens J. Investigating myocardial work as a CRT response predictor is not a waste of work[J]. Eur Heart J, 2020, 41 (39): 3824-6. doi: 10.1093/eurheartj/ehaa677 [54] Aalen JM, Donal E, Larsen CK, et al. Imaging predictors of response to cardiac resynchronization therapy: left ventricular work asymmetry by echocardiography and septal viability by cardiac magnetic resonance[J]. Eur Heart J, 2020, 41(39): 3813-23. doi: 10.1093/eurheartj/ehaa603 [55] 丁雪晏, 李一丹, 魏丽群, 等. 左心室压力-应变环评价心脏淀粉样变性患者心肌做功[J]. 中华超声影像学杂志, 2021, 30(7): 604-8. doi: 10.3760/cma.j.cn131148-20210207-00097 [56] 李中言, 马丽萍, 关青. 心脏淀粉样变性[J]. 解放军医学情报, 1995, 9 (4): 178-80. https://www.cnki.com.cn/Article/CJFDTOTAL-JYQB199504008.htm [57] Clemmensen TS, Eiskjær H, Mikkelsen F, et al. Left ventricular pressure-strain-derived myocardial work at rest and during exercise in patients with cardiac amyloidosis[J]. J Am Soc Echocardiogr, 2020, 33(5): 573-82. doi: 10.1016/j.echo.2019.11.018 [58] Clemmensen TS, Eiskjær H, Ladefoged B, et al. Prognostic implications of left ventricular myocardial work indices in cardiac amyloidosis[J]. Eur Heart J Cardiovasc Imaging, 2020, 22(6): 695-704. [59] 周京敏, 崔晓通, 葛均波. 中国心力衰竭的流行病学概况[J]. 中华心血管病杂志, 2015, 43(12): 1018-21. doi: 10.3760/cma.j.issn.0253-3758.2015.12.002 [60] Sahiti F, Morbach C, Henneges C, et al. Dynamics of left ventricular myocardial work in patients hospitalized for acute heart failure[J]. J Cardiac Fail, 2021, 27(12): 1393-403. doi: 10.1016/j.cardfail.2021.07.004 [61] Paolisso P, Gallinoro E, Mileva N, et al. Performance of non-invasive myocardial work to predict the first hospitalization for de novo heart failure with preserved ejection fraction (HFpEF)[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(Supplement_1): jeab289.097. doi: 10.1093/ehjci/jeab289.097 [62] Wang CL, Chan YH, Wu VCC, et al. Incremental prognostic value of global myocardial work over ejection fraction and global longitudinal strain in patients with heart failure and reduced ejection fraction[J]. Eur Heart J Cardiovasc Imaging, 2020, 22(3): 348-56. [63] Li YN, Zheng Q, Cui CY, et al. Application value of myocardial work technology by non- invasive echocardiography in evaluating left ventricular function in patients with chronic heart failure[J]. Quant Imaging Med Surg, 2022, 12(1): 244-56. doi: 10.21037/qims-20-1038 [64] Bouali Y, Donal E, Gallard A, et al. Prognostic usefulness of myocardial work in patients with heart failure and reduced ejection fraction treated by sacubitril/valsartan[J]. Am J Cardiol, 2020, 125 (12): 1856-62. doi: 10.1016/j.amjcard.2020.03.031 [65] Valentim Gonçalves A, Galrinho A, Pereira-da-Silva T, et al. Myocardial work improvement after sacubitril- valsartan therapy: a new echocardiographic parameter for a new treatment[J]. J Cardiovasc Med (Hagerstown), 2020, 21(3): 223-30. doi: 10.2459/JCM.0000000000000932 [66] Seferović PM, Paulus WJ. Clinical diabetic cardiomyopathy: a twofaced disease with restrictive and dilated phenotypes[J]. Eur Heart J, 2015, 36(27): 1718-27. doi: 10.1093/eurheartj/ehv134 [67] Przewlocka-Kosmala M, Marwick TH, Mysiak A, et al. Usefulness of myocardial work measurement in the assessment of left ventricular systolic reserve response to spironolactone in heart failure with preserved ejection fraction[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(10): 1138-46. doi: 10.1093/ehjci/jez027 [68] Wang T, Li L, Huang J, et al. Assessment of subclinical left ventricle myocardial dysfunction using global myocardial work in type 2 diabetes mellitus patients with preserved left ventricle ejection fraction[J]. Diabetol Metab Syndr, 2022, 14(1): 17. doi: 10.1186/s13098-021-00781-x [69] Huang DQ, Cui CY, Zheng Q, et al. Quantitative analysis of myocardial work by non-invasive left ventricular pressure-strain loop in patients with type 2 diabetes mellitus[J]. Front Cardiovasc Med, 2021, 8: 733339. doi: 10.3389/fcvm.2021.733339 [70] Liao LS, Shi BB, Ding ZM, et al. Echocardiographic study of myocardial work in patients with type 2 diabetes mellitus[J]. BMC Cardiovasc Disord, 2022, 22(1): 59. doi: 10.1186/s12872-022-02482-3 [71] Chaganti BT, Negishi K, Okajima K. Role of myocardial strain imaging in cancer therapy-related cardiac dysfunction[J]. Curr Cardiol Rep, 2022, 24(6): 739-48. doi: 10.1007/s11886-022-01692-7 [72] McGregor P, Moura FA, Banchs J, et al. Role of myocardial strain imaging in surveillance and management of cancer therapeutics‐related cardiac dysfunction: a systematic review[J]. Echocardiography, 2021, 38(2): 314-28. doi: 10.1111/echo.14944 [73] Calvillo-Argüelles O, Thampinathan B, Somerset E, et al. Diagnostic and prognostic value of myocardial work indices for identification of cancer therapy-related cardiotoxicity[J]. JACC Cardiovasc Imaging, 2022, 15(8): 1361-76. doi: 10.1016/j.jcmg.2022.02.027 [74] Guan JY, Bao WY, Xu Y, et al. Assessment of myocardial work in cancer therapy- related cardiac dysfunction and analysis of CTRCD prediction by echocardiography[J]. Front Pharmacol, 2021, 12(1): 770580. [75] Ke QQ, Xu HB, Bai J, et al. Evaluation of global and regional left ventricular myocardial work by echocardiography in patients with chronic kidney disease[J]. Echocardiography, 2020, 37(11): 1784-91. doi: 10.1111/echo.14864 [76] Liu FZ, Wang XL, Zhang CQ. Quantitative assessment of left ventricular myocardial work in chronic kidney disease patients by a novel non- invasive pressure-strain loop analysis method[J]. Int J Cardiovasc Imaging, 2021, 37(5): 1567-75. doi: 10.1007/s10554-020-02132-9 [77] Liu XH, Chen LX, Zhong XF, et al. Noninvasive evaluation of myocardial work in patients with chronic kidney disease using left ventricular pressure- strain loop analysis[J]. Diagnostics (Basel), 2022, 12(4): 856. doi: 10.3390/diagnostics12040856 [78] 申凯凯, 朱好辉, 丁晓, 等. 无创左室压力应变曲线在评估血液透析患者左室心肌做功中的应用[J]. 中华超声影像学杂志, 2020, 29(6): 505-10. [79] Yedidya I, Lustosa RP, Fortuni F, et al. Prognostic implications of left ventricular myocardial work indices in patients with secondary mitral regurgitation[J]. Circ Cardiovasc Imaging, 2021, 14(9): e012142. [80] Hubert A, Galli E, Leurent G, et al. Left ventricular function after correction of mitral regurgitation: impact of the clipping approach [J]. Echocardiography, 2019, 36(11): 2010-8. doi: 10.1111/echo.14523 [81] Meucci M, Butcher S, Van Der Velde E, et al. Non- invasive left ventricular myocardial work in patients with chronic aortic regurgitation and preserved left ventricular ejection fraction[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(Supplement_1): jeab289.362. doi: 10.1093/ehjci/jeab289.362 [82] D'Andrea A, Sperlongano S, Formisano T, et al. Stress Echocardiography and Strain in Aortic Regurgitation (SESAR protocol): left ventricular contractile reserve and myocardial work in asymptomatic patients with severe aortic regurgitation[J]. Echocardiography, 2020, 37(8): 1213-21. [83] D'Andrea A, Radmilovic J, Carbone A, et al. Speckle tracking evaluation in endurance athletes: the "optimal" myocardial work[J]. Int J Cardiovasc Imaging, 2020, 36(9): 1679-88. [84] D'Andrea A, Ilardi F, D'Ascenzi F, et al. Impaired myocardial work efficiency in heart failure with preserved ejection fraction[J]. Eur Heart J Cardiovasc Imaging, 2021, 22(11): 1312-20. [85] Otto MEB, Martins AMA, de Oliveira Martins Campos Dall'Orto A, et al. Acute cellular rejection in heart transplant patients: insights of global longitudinal strain, myocardial work, and an exclusive group of chagas disease[J]. Front Cardiovasc Med, 2022, 9: 841698. [86] Hiemstra YL, van der Bijl P, el Mahdiui M, et al. Myocardial work in nonobstructive hypertrophic cardiomyopathy: implications for outcome[J]. JAmSoc Echocardiogr, 2020, 33(10): 1201-8. [87] Ilardi F, D'Andrea A, D'Ascenzi F, et al. Myocardial work by echocardiography: principles and applications in clinical practice [J]. J Clin Med, 2021, 10(19): 4521. [88] Jain R, Bajwa T, Roemer S, et al. Myocardial work assessment in severe aortic stenosis undergoing transcatheter aortic valve replacement [J]. Eur Heart J Cardiovasc Imaging, 2020, 22(6): 715-21. [89] Taconne M, Le Rolle V, Panis V, et al. How myocardial work could be relevant in patients with an aortic valve stenosis?[J]. Eur Heart J Cardiovasc Imaging, 2022. DOI: 10.1093/ehjci/jeac046.
点击查看大图
表(1)
计量
- 文章访问数: 507
- HTML全文浏览量: 204
- PDF下载量: 61
- 被引次数: 0