留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

多模态磁共振技术预测脑胶质瘤MGMT启动子甲基化状态的研究进展

靳向飞 罗泽斌 陈晓东

靳向飞, 罗泽斌, 陈晓东. 多模态磁共振技术预测脑胶质瘤MGMT启动子甲基化状态的研究进展[J]. 分子影像学杂志, 2022, 45(6): 950-956. doi: 10.12122/j.issn.1674-4500.2022.06.31
引用本文: 靳向飞, 罗泽斌, 陈晓东. 多模态磁共振技术预测脑胶质瘤MGMT启动子甲基化状态的研究进展[J]. 分子影像学杂志, 2022, 45(6): 950-956. doi: 10.12122/j.issn.1674-4500.2022.06.31
JIN Xiangfei, LUO Zebin, CHEN Xiaodong. Progress of multimodality magnetic resonance techniques in predicting the MGMT promoter methylation status of glioma[J]. Journal of Molecular Imaging, 2022, 45(6): 950-956. doi: 10.12122/j.issn.1674-4500.2022.06.31
Citation: JIN Xiangfei, LUO Zebin, CHEN Xiaodong. Progress of multimodality magnetic resonance techniques in predicting the MGMT promoter methylation status of glioma[J]. Journal of Molecular Imaging, 2022, 45(6): 950-956. doi: 10.12122/j.issn.1674-4500.2022.06.31

多模态磁共振技术预测脑胶质瘤MGMT启动子甲基化状态的研究进展

doi: 10.12122/j.issn.1674-4500.2022.06.31
基金项目: 国家自然科学基金(82072507);湛江市科技发展专项资金竞争性分配项目(2019A01026,2020A01024);广东医科大学附属医院临床研究项目(LCYJ2020B010);广东医科大学附属医院博士基金(BJ201521)
详细信息
    作者简介:

    靳向飞,在读硕士研究生,E-mail: JINxf99@163.com

    通讯作者:

    罗泽斌,主任医师,硕士生导师,E-mail: gdmcfsjd@qq.com

    陈晓东,博士后,硕士生导师,E-mail: 45994381@qq.com

Progress of multimodality magnetic resonance techniques in predicting the MGMT promoter methylation status of glioma

Funds: Supported by National Natural Science Foundation of China (82072507)
  • 摘要: 胶质瘤是最常见的原发性中枢神经系统恶性肿瘤。O6-甲基鸟嘌呤-DNA甲基转移酶(MGMT)启动子甲基化是胶质瘤一个重要的分子特征,与烷化剂化疗敏感性、预后、风险分层、肿瘤复发等密切相关。当前仅使用手术标本通过基因检测分析来确定MGMT启动子甲基化状态,这一过程有局限性。MRI是目前应用最广泛的脑肿瘤非侵入性检查方法,近年来已有多种先进磁共振成像技术被用于术前无创性评估MGMT甲基化状态,这将有助于预测治疗反应和预后。本文就近几年化学交换饱和转移成像和酰胺质子转移成像、灌注加权成像(动态磁敏感对比增强成像、动态对比增强灌注成像、动脉自旋标记、基于流入的血管空间占位)、扩散成像(扩散张量成像、扩散峰度成像、体素内不相干运动、限制光谱成像)、磁敏感加权成像、波谱成像等磁共振成像技术预测MGMT甲基化状态的研究进展及MGMT甲基化临床意义进行综述,以期为患者个体化治疗方案的制定提供术前依据。

     

  • [1] Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-51. doi: 10.1093/neuonc/noab106
    [2] Picart T, Barritault M, Poncet D, et al. Characteristics of diffuse hemispheric gliomas, H3 G34-mutant in adults[J]. Neuro Oncol Adv, 2021, 3(1): vdab061. doi: 10.1093/noajnl/vdab061
    [3] Schnöller LE, Albrecht V, Brix N, et al. Integrative analysis of therapy resistance and transcriptomic profiling data in glioblastoma cells identifies sensitization vulnerabilities for combined modality radiochemotherapy[J]. Radiat Oncol, 2022, 17(1): 79. doi: 10.1186/s13014-022-02052-z
    [4] Oldrini B, Vaquero-Siguero N, Mu QH, et al. MGMT genomic rearrangements contribute to chemotherapy resistance in gliomas[J]. Nat Commun, 2020, 11: 3883. doi: 10.1038/s41467-020-17717-0
    [5] Mohile NA, Messersmith H, Gatson NTN, et al. Therapy for diffuse astrocytic and oligodendroglial tumors in adults: ASCO-SNO guideline[J]. Neuro Oncol, 2021, 24(3): 358-83.
    [6] Ramos-Fresnedo A, Pullen MW, Perez-Vega C, et al. The survival outcomes of molecular glioblastoma IDH-wildtype: a multicenter study [J]. J Neurooncol, 2022, 157(1): 177-85. doi: 10.1007/s11060-022-03960-6
    [7] Haque W, Teh C, Butler EB, et al. Prognostic and predictive impact of MGMT promoter methylation status in high risk grade Ⅱ glioma[J]. J Neurooncol, 2022, 157(1): 137-46. doi: 10.1007/s11060-022-03955-3
    [8] Haque W, Thong E, Andrabi S, et al. Prognostic and predictive impact of MGMT promoter methylation in grade 3 gliomas[J]. J Clin Neurosci, 2021, 85: 115-21. doi: 10.1016/j.jocn.2020.12.028
    [9] Hosoya T, Takahashi M, Honda-Kitahara M, et al. MGMT gene promoter methylation by pyrosequencing method correlates volumetric response and neurological status in IDH wild-type glioblastomas[J]. J Neurooncol, 2022, 157(3): 561-71. doi: 10.1007/s11060-022-03999-5
    [10] Ge SN, Shi YW, Zhu G, et al. Molecular pathological markers correlated with the recurrence patterns of glioma[J]. Front Oncol, 2021, 10: 565045. doi: 10.3389/fonc.2020.565045
    [11] Mathur R, Zhang YL, Grimmer MR, et al. MGMT promoter methylation level in newly diagnosed low-grade glioma is a predictor of hypermutation at recurrence[J]. Neuro Oncol, 2020, 22(11): 1580-90. doi: 10.1093/neuonc/noaa059
    [12] 刘怀贵, 李威. 酰胺质子转移成像在脑肿瘤中的研究进展[J]. 国际医学放射学杂志, 2020, 43(1): 45-8. doi: 10.19300/j.2020.Z17449
    [13] Jiang SS, Rui QH, Wang Y, et al. Discriminating MGMT promoter methylation status in patients with glioblastoma employing amide proton transfer-weighted MRI metrics[J]. Eur Radiol, 2018, 28(5): 2115-23. doi: 10.1007/s00330-017-5182-4
    [14] Su L, Gao PY, Lin S, et al. Predicting O6-methylguanine-DNA methyltransferase protein expression in primary low-and high-grade gliomas using certain qualitative characteristics of amide proton transfer-weighted magnetic resonance imaging[J]. World Neurosurg, 2018, 116: e814-23. doi: 10.1016/j.wneu.2018.05.100
    [15] Paech D, Windschuh J, Oberhollenzer J, et al. Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multipool CEST MRI at 7.0 T[J]. Neuro Oncol, 2018, 20(12): 1661-71. doi: 10.1093/neuonc/noy073
    [16] Joo B, Han K, Ahn SS, et al. Amide proton transfer imaging might predict survival and IDH mutation status in high-grade glioma[J]. Eur Radiol, 2019, 29(12): 6643-52. doi: 10.1007/s00330-019-06203-x
    [17] Ozturk K, Soylu E, Cayci Z. Correlation between dynamic susceptibility contrast perfusion MRI and genomic alterations in glioblastoma[J]. Neuroradiology, 2021, 63(11): 1801-10. doi: 10.1007/s00234-021-02674-2
    [18] Nakada M, Kita D, Watanabe T, et al. Aberrant signaling pathways in glioma[J]. Cancers, 2011, 3(3): 3242-78. doi: 10.3390/cancers3033242
    [19] 陈小田, 苏春秋, 潘婷, 等. DSC-PWI联合常规MRI特征在预测高级别胶质瘤MGMT启动子甲基化状态中的价值[J]. 放射学实践, 2021, 36(5): 570-6. doi: 10.13609/j.cnki.1000-0313.2021.05.001
    [20] Hempel JM, Schittenhelm J, Klose U, et al. In vivo molecular profiling of human glioma: cross-sectional observational study using dynamic susceptibility contrast magnetic resonance perfusion imaging[J]. Clin Neuroradiol, 2019, 29(3): 479-91. doi: 10.1007/s00062-018-0676-2
    [21] Hilario A, Hernandez-Lain A, Sepulveda JM, et al. Perfusion MRI grading diffuse gliomas: impact of permeability parameters on molecular biomarkers and survival[J]. Neurocirugía Engl Ed, 2019, 30(1): 11-8. doi: 10.1016/j.neucir.2018.06.004
    [22] Fuster-Garcia E, Estellés DL, del Mar Álvarez-Torres M, et al. MGMT methylation may benefit overall survival in patients with moderately vascularized glioblastomas[J]. Eur Radiol, 2021, 31(3): 1738-47. doi: 10.1007/s00330-020-07297-4
    [23] Zhang HW, lyu GW, He WJ, et al. DSC and DCE histogram analyses of glioma biomarkers, including IDH, MGMT, and TERT, on differentiation and survival[J]. Acad Radiol, 2020, 27(12): e263-71. doi: 10.1016/j.acra.2019.12.010
    [24] Choi HJ, Choi SH, You SH, et al. MGMT promoter methylation status in initial and recurrent glioblastoma: correlation study with DWI and DSC PWI features[J]. AJNR Am J Neuroradiol, 2021, 42(5): 853-60. doi: 10.3174/ajnr.A7004
    [25] Yoon RG, Kim HS, Paik W, et al. Different diagnostic values of imaging parameters to predict pseudoprogression in glioblastoma subgroups stratified by MGMT promoter methylation[J]. Eur Radiol, 2017, 27(1): 255-66. doi: 10.1007/s00330-016-4346-y
    [26] Del Mar Álvarez-Torres M, Fuster-García E, Balaña C, et al. Lack of benefit of extending temozolomide treatment in patients with high vascular glioblastoma with methylated MGMT[J]. Cancers, 2021, 13 (21): 5420. doi: 10.3390/cancers13215420
    [27] Soo AS, Na-Young S, Hee CJ, et al. Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging[J]. J Neurosurg, 2014, 121(2): 367-73. doi: 10.3171/2014.5.JNS132279
    [28] 张瀚文. 磁共振动态磁敏感增强与动态对比增强成像对胶质瘤分子分型的比较研究[D]. 广州: 广州医科大学, 2020.
    [29] 康厚艺. 多参数MR灌注成像及放射组学在脑胶质瘤分子分型及预后中的价值[D]. 重庆: 中国人民解放军陆军军医大学, 2020.
    [30] Ahn SH, Ahn SS, Park YW, et al. Association of dynamic susceptibility contrast- and dynamic contrast-enhanced magnetic resonance imaging parameters with molecular marker status in lower-grade gliomas: a retrospective study[J]. Neuroradiol J, 2022: 9714009221098369.
    [31] Shen NX, Zhang S, Cho J, et al. Application of cluster analysis of time evolution for magnetic resonance imaging-derived oxygen extraction fraction mapping: a promising strategy for the genetic profile prediction and grading of glioma[J]. Front Neurosci, 2021, 15: 736891. doi: 10.3389/fnins.2021.736891
    [32] Kim MM, Aryal MP, Sun YL, et al. Response assessment during chemoradiation using a hypercellular/hyperperfused imaging phenotype predicts survival in patients with newly diagnosed glioblastoma[J]. Neuro Oncol, 2021, 23(9): 1537-46. doi: 10.1093/neuonc/noab038
    [33] Han Y, Yan LF, Wang XB, et al. Structural and advanced imaging in predicting MGMT promoter methylation of primary glioblastoma: a region of interest based analysis[J]. BMC Cancer, 2018, 18(1): 215. doi: 10.1186/s12885-018-4114-2
    [34] Yoo RE, Yun TJ, Hwang I, et al. Arterial spin labeling perfusion-weighted imaging aids in prediction of molecular biomarkers and survival in glioblastomas[J]. Eur Radiol, 2020, 30(2): 1202-11. doi: 10.1007/s00330-019-06379-2
    [35] Yogananda CGB, Shah BR, Nalawade SS, et al. MRI- based deep-learning method for determining glioma MGMT promoter methylation status[J]. AJNR Am J Neuroradiol, 2021, 42(5): 845-52. doi: 10.3174/ajnr.A7029
    [36] Song SS, Shan Y, Wang LM, et al. MGMT promoter methylation status shows no effect on[18F] FET uptake and CBF in gliomas: a stereotactic image-based histological validation study[J]. Eur Radiol, 2022, 32(8): 5577-87. doi: 10.1007/s00330-022-08606-9
    [37] Guo LJ, Li XD, Cao HM, et al. Inflow-based vascular-space-occupancy (iVASO) might potentially predict IDH mutation status and tumor grade in diffuse cerebral gliomas[J]. J Neuroradiol, 2022, 49(3): 267-74. doi: 10.1016/j.neurad.2021.01.002
    [38] Cao HM, Xiao X, Hua J, et al. The added value of inflow- based vascular-space-occupancy and diffusion-weighted imaging in preoperative grading of gliomas[J]. Neurodegener Dis, 2020, 20(4): 123-30. doi: 10.1159/000512545
    [39] He WL, Li XD, Hua J, et al. Noninvasive assessment of O6-methyl-guanine-DNA methyltransferase promoter methylation status in World Health Organization grade Ⅱ-Ⅳ glioma using histogram analysis of inflow-based vascular-space-occupancy combined with struc-tural magnetic resonance imaging[J]. J Magn Reson Imaging, 2021, 54(1): 227-36. doi: 10.1002/jmri.27514
    [40] Moon WJ, Choi JW, Roh HG, et al. Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging[J]. Neuroradiology, 2012, 54(6): 555-63. doi: 10.1007/s00234-011-0947-y
    [41] Huang ZX, Lu CY, Li G, et al. Prediction of lower grade insular glioma molecular pathology using diffusion tensor imaging metric-based histogram parameters[J]. Front Oncol, 2021, 11: 627202. doi: 10.3389/fonc.2021.627202
    [42] Latysheva A, Geier OM, Hope TR, et al. Diagnostic utility of Restriction Spectrum Imaging in the characterization of the peritumoral brain zone in glioblastoma: analysis of overall and progression-free survival[J]. Eur J Radiol, 2020, 132: 109289. doi: 10.1016/j.ejrad.2020.109289
    [43] 符媚媚. 基于DKI和DTI预测高级别胶质瘤MGMT启动子甲基化状态及其与Ki-67表达程度的相关性研究[D]. 海口: 海南医学院, 2021.
    [44] Wang XC, Tan Y, Zhang H, et al. Diffusion kurtosis imaging reflects GFAP, TopoIIα, and MGMT expression in astrocytomas[J]. Neurol India, 2021, 69(1): 119-25. doi: 10.4103/0028-3886.310109
    [45] Pope WB, Lai A, Mehta R, et al. Apparent diffusion coefficient histogram analysis stratifies progression-free survival in newly diagnosed bevacizumab-treated glioblastoma[J]. AJNR Am J Neuroradiol, 2011, 32(5): 882-9. doi: 10.3174/ajnr.A2385
    [46] Gihr G, Horvath-Rizea D, Hekeler E, et al. Diffusion weighted imaging in high-grade gliomas: a histogram-based analysis of apparent diffusion coefficient profile[J]. PLoS One, 2021, 16(4): e0249878. doi: 10.1371/journal.pone.0249878
    [47] Choi YS, Ahn SS, Kim DW, et al. Incremental prognostic value of ADC histogram analysis over MGMT promoter methylation status in patients with glioblastoma[J]. Radiology, 2016, 281(1): 175-84. doi: 10.1148/radiol.2016151913
    [48] Rundle-Thiele D, Day B, Stringer B, et al. Using the apparent diffusion coefficient to identifying MGMT promoter methylation status early in glioblastoma: importance of analytical method[J]. J Med Radiat Sci, 2015, 62(2): 92-8. doi: 10.1002/jmrs.103
    [49] Borkowski K, Krzyżak AT. Analysis and correction of errors in DTI-based tractography due to diffusion gradient inhomogeneity[J]. J Magn Reson, 2018, 296: 5-11. doi: 10.1016/j.jmr.2018.08.011
    [50] Hempel JM, Bisdas S, Schittenhelm J, et al. In vivo molecular profiling of human glioma using diffusion kurtosis imaging[J]. J Neurooncol, 2017, 131(1): 93-101. doi: 10.1007/s11060-016-2272-0
    [51] Wang X, Li FY, Wang DW, et al. Diffusion kurtosis imaging combined with molecular markers as a comprehensive approach to predict overall survival in patients with gliomas[J]. Eur J Radiol, 2020, 128: 108985. doi: 10.1016/j.ejrad.2020.108985
    [52] 李俊杰, 张辉. 体素内不相干运动成像在脑肿瘤中的研究进展[J]. 磁共振成像, 2021, 12(3): 82-4. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC202103020.htm
    [53] 田博闻, 杨国强, 秦江波, 等. IVIM在预测高级别脑胶质瘤MGMT启动子甲基化状态的应用价值[J]. 磁共振成像, 2020, 11(7): 506-10. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC202007010.htm
    [54] Lu J, Li X, Li HL. Perfusion parameters derived from MRI for preoperative prediction of IDH mutation and MGMT promoter methylation status in glioblastomas[J]. Magn Reson Imaging, 2021, 83: 189-95. doi: 10.1016/j.mri.2021.09.005
    [55] Krishnan AP, Karunamuni R, Leyden KM, et al. Restriction spectrum imaging improves risk stratification in patients with glioblastoma[J]. AJNR Am J Neuroradiol, 2017, 38(5): 882-9. doi: 10.3174/ajnr.A5099
    [56] Daghighi S, Bahrami N, Tom WJ, et al. Restriction spectrum imaging differentiates true tumor progression from immune-mediated pseudoprogression: case report of a patient with glioblastoma[J]. Front Oncol, 2020, 10: 24. doi: 10.3389/fonc.2020.00024
    [57] Haller S, Haacke EM, Thurnher MM, et al. Susceptibility-weighted imaging: technical essentials and clinical neurologic applications[J]. Radiology, 2021, 299(1): 3-26. doi: 10.1148/radiol.2021203071
    [58] Kong LW, Chen J, Zhao H, et al. Intratumoral susceptibility signals reflect biomarker status in gliomas[J]. Sci Rep, 2019, 9: 17080. doi: 10.1038/s41598-019-53629-w
    [59] 折刚刚. 胶质母细胞瘤磁共振波谱成像与MGMT分子分型的相关性研究[D]. 延安: 延安大学, 2018.
    [60] 肖瑾. 多模态MRI在人脑胶质瘤病理分级、基因型及其预后评估中的应用[D]. 合肥: 安徽医科大学, 2018.
    [61] Sanvito F, Castellano A, Falini A. Advancements in neuroimaging to unravel biological and molecular features of brain tumors[J]. Cancers, 2021, 13(3): 424. doi: 10.3390/cancers13030424
    [62] Springer E, Cardoso PL, Strasser B, et al. MR fingerprinting-a radiogenomic marker for diffuse gliomas[J]. Cancers, 2022, 14(3): 723. doi: 10.3390/cancers14030723
  • 加载中
计量
  • 文章访问数:  237
  • HTML全文浏览量:  249
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-21
  • 刊出日期:  2022-11-20

目录

    /

    返回文章
    返回