留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

磁共振定量技术评估肝脏铁过载的研究进展

王燕 靳向飞 黎斌 陈武标

王燕, 靳向飞, 黎斌, 陈武标. 磁共振定量技术评估肝脏铁过载的研究进展[J]. 分子影像学杂志, 2022, 45(5): 790-794. doi: 10.12122/j.issn.1674-4500.2022.05.30
引用本文: 王燕, 靳向飞, 黎斌, 陈武标. 磁共振定量技术评估肝脏铁过载的研究进展[J]. 分子影像学杂志, 2022, 45(5): 790-794. doi: 10.12122/j.issn.1674-4500.2022.05.30
WANG Yan, JIN Xiangfei, LI Bin, CHEN Wubiao. Advance in the assessment of liver iron overload by quantitative magnetic resonance imaging[J]. Journal of Molecular Imaging, 2022, 45(5): 790-794. doi: 10.12122/j.issn.1674-4500.2022.05.30
Citation: WANG Yan, JIN Xiangfei, LI Bin, CHEN Wubiao. Advance in the assessment of liver iron overload by quantitative magnetic resonance imaging[J]. Journal of Molecular Imaging, 2022, 45(5): 790-794. doi: 10.12122/j.issn.1674-4500.2022.05.30

磁共振定量技术评估肝脏铁过载的研究进展

doi: 10.12122/j.issn.1674-4500.2022.05.30
基金项目: 

湛江市科研基金项目 2014A404

详细信息
    作者简介:

    王燕,在读硕士研究生,E-mail: 1719858525@qq.com

    通讯作者:

    陈武标,硕士,主任医师,E-mail: 2314792704@qq.com

Advance in the assessment of liver iron overload by quantitative magnetic resonance imaging

  • 摘要: 肝脏铁过载是遗传性血色素沉着症和输血性含铁血黄素沉着症的主要组织学特征,如果不进行治疗,过量的铁可导致肝损伤并缓慢发展为肝硬化和肝细胞癌。因此,肝铁浓度的评估对于铁过载的检测和定量分级以及铁螯合治疗的监测是至关重要的。金标准肝活检是有创性的,并且容易出现采样偏差,而MRI技术的非侵入性以及对铁的高敏感性使其成为广为使用的方法。本文将对信号强度比法、T2/R2弛豫法、磁共振波谱成像、T2*/R2*弛豫法、超短回波时间成像技术及定量磁化率成像评估肝铁定量的研究进展进行综述。

     

  • [1] Labranche R, Gilbert G, Cerny M, et al. Liver iron quantification with MR imaging: a primer for radiologists[J]. Radiographics, 2018, 38(2): 392-412. doi: 10.1148/rg.2018170079
    [2] Headley AM, Grice JV, Pickens DR. Reproducibility of liver iron concentration estimates in MRI through R2* measurement determined by least-squares curve fitting[J]. J Appl Clin Med Phys, 2020, 21(12): 295-303. doi: 10.1002/acm2.13096
    [3] Khalifa A, Rockey DC. The utility of liver biopsy in 2020[J]. Curr Opin Gastroenterol, 2020, 36(3): 184-91. doi: 10.1097/MOG.0000000000000621
    [4] Meneses A, Santabárbara JM, Romero JA, et al. Determination of non-invasive biomarkers for the assessment of fibrosis, steatosis and hepatic iron overload by MR image analysis. A pilot study[J]. Diagnostics (Basel), 2021, 11(7): 1178. doi: 10.3390/diagnostics11071178
    [5] 肖志坚. 铁过载诊断与治疗的中国专家共识[J]. 中华血液学杂志, 2011, 32(8): 572-4. doi: 10.3760/cma.j.issn.0253-2727.2011.08.021
    [6] Obrzut M, Atamaniuk V, Glaser KJ, et al. Value of liver iron concentration in healthy volunteers assessed by MRI[J]. Sci Rep, 2020, 10: 17887. doi: 10.1038/s41598-020-74968-z
    [7] Hernando D, Cook RJ, Qazi N, et al. Complex confounder-corrected R2* mapping for liver iron quantification with MRI[J]. Eur Radiol, 2021, 31(1): 264-75. doi: 10.1007/s00330-020-07123-x
    [8] Nemeth E, Ganz T. Hepcidin-ferroportin interaction controls systemic iron homeostasis[J]. Int J Mol Sci, 2021, 22(12): 6493. doi: 10.3390/ijms22126493
    [9] Golfeyz S, Lewis S, Weisberg IS. Hemochromatosis: patho-physiology, evaluation, and management of hepatic iron overload with a focus on MRI[J]. Expert Rev Gastroenterol Hepatol, 2018, 12 (8): 767-78. doi: 10.1080/17474124.2018.1496016
    [10] Yu YY, Jiang L, Wang H, et al. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis[J]. Blood, 2020, 136 (6): 726-39. doi: 10.1182/blood.2019002907
    [11] Mancardi D, Mezzanotte M, Arrigo E, et al. Iron overload, oxidative stress, and ferroptosis in the failing heart and liver[J]. Antioxidants (Basel), 2021, 10(12): 1864. doi: 10.3390/antiox10121864
    [12] Pietrangelo A. Mechanisms of iron hepatotoxicity[J]. J Hepatol, 2016, 65(1): 226-7. doi: 10.1016/j.jhep.2016.01.037
    [13] Mazé J, Vesselle G, Herpe G, et al. Evaluation of hepatic iron concentration heterogeneities using the MRI R2* mapping method[J]. Eur J Radiol, 2019, 116: 47-54. doi: 10.1016/j.ejrad.2018.02.011
    [14] Gandon Y, Olivié D, Guyader D, et al. Non- invasive assessment of hepatic iron stores by MRI[J]. Lancet, 2004, 363(9406): 357-62. doi: 10.1016/S0140-6736(04)15436-6
    [15] Hernando D, Levin YS, Sirlin CB, et al. Quantification of liver iron with MRI: state of the art and remaining challenges[J]. J Magn Reson Imaging, 2014, 40(5): 1003-21. doi: 10.1002/jmri.24584
    [16] St Pierre TG, Clark PR, Chua-Anusorn W, et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance[J]. Blood, 2005, 105(2): 855-61. doi: 10.1182/blood-2004-01-0177
    [17] St Pierre TG, El-Beshlawy A, Elalfy MS, et al. Multicenter validation of spin-density projection-assisted R2-MRI for the non-invasive measurement of liver iron concentration[J]. Blood, 2010, 116(21): 2053. doi: 10.1182/blood.V116.21.2053.2053
    [18] Calle-Toro JS, Barrera CA, Khrichenko D, et al. R2 relaxometry based MR imaging for estimation of liver iron content: a comparison between two methods[J]. Abdom Radiol, 2019, 44(9): 3058-68. doi: 10.1007/s00261-019-02074-4
    [19] Uhrig M, Mueller J, Longerich T, et al. Susceptibility based multiparametric quantification of liver disease: Non-invasive evaluation of steatosis and iron overload[J]. Magn Reson Imaging, 2019, 63: 114-22. doi: 10.1016/j.mri.2019.08.016
    [20] Lin HM, Fu CX, Kannengiesser S, et al. Quantitative analysis of hepatic iron in patients suspected of coexisting iron overload and steatosis using multi-echo single-voxel magnetic resonance spectroscopy: comparison with fat- saturated multi-echo gradient echo sequence[J]. J Magn Reson Imaging, 2018, 48(1): 205-13. doi: 10.1002/jmri.25967
    [21] Zhan CY, Olsen S, Zhang HC, et al. Detection of hepatic steatosis and iron content at 3 Tesla: comparison of two- point Dixon, quantitative multi- echo Dixon, and MR spectroscopy[J]. Abdom Radiol, 2019, 44(9): 3040-8. doi: 10.1007/s00261-019-02118-9
    [22] Simchick G, Zhao RY, Hamilton G, et al. Spectroscopy-based multi-parametric quantification in subjects with liver iron overload at 1.5T and 3T[J]. Magn Reson Med, 2022, 87(2): 597-613. doi: 10.1002/mrm.29021
    [23] Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients[J]. Blood, 2005, 106(4): 1460-5. doi: 10.1182/blood-2004-10-3982
    [24] Rostoker G, Laroudie M, Blanc R, et al. Histological scores validate the accuracy of hepatic iron load measured by signal intensity ratio and R2* relaxometry MRI in Dialysis patients[J]. J Clin Med, 2019, 9(1): 17. doi: 10.3390/jcm9010017
    [25] Sussman MS, Ward R, Kuo KHM, et al. Impact of MRI technique on clinical decision- making in patients with liver iron overload: comparison of FerriScan-versus R2*-derived liver iron concentration[J]. Eur Radiol, 2020, 30(4): 1959-68. doi: 10.1007/s00330-019-06450-y
    [26] Craft ML, Edwards M, Jain TP, et al. R2 and R2* MRI assessment of liver iron content in an undifferentiated diagnostic population with hyperferritinaemia, and impact on clinical decision making[J]. Eur J Radiol, 2021, 135: 109473. doi: 10.1016/j.ejrad.2020.109473
    [27] Abou Zahr R, Burkhardt BEU, Ehsan L, et al. Real-world experience measurement of liver iron concentration by R2 vs. R2 star MRI in hemoglobinopathies[J]. Diagnostics (Basel), 2020, 10(10): 768. doi: 10.3390/diagnostics10100768
    [28] Healy GM, Kannengiesser SAR, Espin-Garcia O, et al. Comparison of Inline R2* MRI versus FerriScan for liver iron quantification in patients on chelation therapy for iron overload: preliminary results[J]. Eur Radiol, 2021, 31(12): 9296-305. doi: 10.1007/s00330-021-08019-0
    [29] Wunderlich AP, Schmidt SA, Mauro V, et al. Liver iron content determination using a volumetric breath-hold gradient-echo sequence with In-line R2* calculation[J]. J Magn Reson Imaging, 2020, 52(5): 1550-6. doi: 10.1002/jmri.27185
    [30] Henninger B, Plaikner M, Zoller H, et al. Performance of different Dixon-based methods for MR liver iron assessment in comparison to a biopsy-validated R2* relaxometry method[J]. Eur Radiol, 2021, 31 (4): 2252-62. doi: 10.1007/s00330-020-07291-w
    [31] Bhimaniya S, Arora J, Sharma P, et al. Liver iron quantification in children and young adults: comparison of a volumetric multi-echo 3-D Dixon sequence with conventional 2-D T2* relaxometry[J]. Pediatr Radiol, 2022: 1-8.
    [32] Rohani SC, Morin CE, Zhong XD, et al. Hepatic iron quantification using a free-breathing 3D radial gradient echo technique and validation with a 2D biopsy-calibrated R2* relaxometry method[J]. J Magn Reson Imaging, 2022, 55(5): 1407-16. doi: 10.1002/jmri.27921
    [33] 熊晓晴, 林绮婷, 司徒定坤, 等. 磁共振水脂分离新技术IDEAL-IQ的应用[J]. 暨南大学学报: 自然科学与医学版, 2020, 41(5): 427-33. https://www.cnki.com.cn/Article/CJFDTOTAL-JNDX202005007.htm
    [34] Ma YJ, Jang H, Chang EY, et al. Ultrashort echo time (UTE) magnetic resonance imaging of myelin: technical developments and challenges[J]. Quant Imaging Med Surg, 2020, 10(6): 1186-203. doi: 10.21037/qims-20-541
    [35] Doyle EK, Toy K, Valdez B, et al. Ultra-short echo time images quantify high liver iron[J]. Magn Reson Med, 2018, 79(3): 1579-85. doi: 10.1002/mrm.26791
    [36] Wu QL, Fu XW, Zhuo ZZ, et al. The application value of ultra-short echo time MRI in the quantification of liver iron overload in a rat model[J]. Quant Imaging Med Surg, 2019, 9(2): 180-7. doi: 10.21037/qims.2018.10.11
    [37] Boss A, Heeb L, Vats D, et al. Assessment of iron nanoparticle distribution in mouse models using ultrashort-echo-time MRI[J]. NMR Biomed, 2022, 35(6): e4690.
    [38] Kee Y, Sandino CM, Syed AB, et al. Free-breathing mapping of hepatic iron overload in children using 3D multi-echo UTE cones MRI[J]. Magn Reson Med, 2021, 85(5): 2608-21. doi: 10.1002/mrm.28610
    [39] Li JQ, Lin HM, Liu T, et al. Quantitative susceptibility mapping (QSM) minimizes interference from cellular pathology in R2* estimation of liver iron concentration[J]. J Magn Reson Imaging, 2018, 48(4): 1069-79. doi: 10.1002/jmri.26019
    [40] Tipirneni-Sajja A, Loeffler RB, Hankins JS, et al. Quantitative susceptibility mapping using a multispectral autoregressive moving average model to assess hepatic iron overload[J]. J Magn Reson Imaging, 2021, 54(3): 721-7. doi: 10.1002/jmri.27584
    [41] Yan FH, He NY, Lin HM, et al. Iron deposition quantification: applications in the brain and liver[J]. J Magn Reson Imaging, 2018, 48(2): 301-17. doi: 10.1002/jmri.26161
    [42] Vinayagamani S, Sheelakumari R, Sabarish S, et al. Quantitative susceptibility mapping: technical considerations and clinical applications in neuroimaging[J]. J Magn Reson Imaging, 2021, 53 (1): 23-37. doi: 10.1002/jmri.27058
    [43] Sharma SD, Fischer R, Schoennagel BP, et al. MRI-based quan-titative susceptibility mapping (QSM) and R2* mapping of liver iron overload: comparison with SQUID-based biomagnetic liver susceptometry[J]. Magn Reson Med, 2017, 78(1): 264-70. doi: 10.1002/mrm.26358
    [44] Lin HM, Wei HJ, He NY, et al. Quantitative susceptibility mapping in combination with water-fat separation for simultaneous liver iron and fat fraction quantification[J]. Eur Radiol, 2018, 28(8): 3494-504. doi: 10.1007/s00330-017-5263-4
    [45] Colgan TJ, Knobloch G, Reeder SB, et al. Sensitivity of quantitative relaxometry and susceptibility mapping to microscopic iron distribution[J]. Magn Reson Med, 2020, 83(2): 673-80. doi: 10.1002/mrm.27946
  • 加载中
计量
  • 文章访问数:  404
  • HTML全文浏览量:  147
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 刊出日期:  2022-09-20

目录

    /

    返回文章
    返回