留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

心脏副交感神经正电子显像剂的研究进展

王慧 何玉林

王慧, 何玉林. 心脏副交感神经正电子显像剂的研究进展[J]. 分子影像学杂志, 2022, 45(5): 774-778. doi: 10.12122/j.issn.1674-4500.2022.05.28
引用本文: 王慧, 何玉林. 心脏副交感神经正电子显像剂的研究进展[J]. 分子影像学杂志, 2022, 45(5): 774-778. doi: 10.12122/j.issn.1674-4500.2022.05.28
WANG Hui, HE Yulin. Development of PET agent for cardiac parasympathetic nervous system[J]. Journal of Molecular Imaging, 2022, 45(5): 774-778. doi: 10.12122/j.issn.1674-4500.2022.05.28
Citation: WANG Hui, HE Yulin. Development of PET agent for cardiac parasympathetic nervous system[J]. Journal of Molecular Imaging, 2022, 45(5): 774-778. doi: 10.12122/j.issn.1674-4500.2022.05.28

心脏副交感神经正电子显像剂的研究进展

doi: 10.12122/j.issn.1674-4500.2022.05.28
基金项目: 国家自然科学基金(82060323);内蒙古自治区高等学校“青年科技英才支持计划”项目(NJYT22003)
详细信息
    作者简介:

    王慧,在读硕士研究生,E-mail: zjp203122@163.com

    通讯作者:

    何玉林,博士,副研究员,E-mail: hyl-0215@163.com

Development of PET agent for cardiac parasympathetic nervous system

Funds: Supported by National Natural Science Foundation (82060323)
  • 摘要: 心脏副交感神经正电子显像剂的研发在评估心血管疾病中起着不可估量的作用,正电子发射断层显像能够高灵敏地反映心脏副交感神经的变化。本文旨在介绍烟碱类、毒蕈碱类和乙酰胆碱酯酶类三种心脏副交感神经显像剂的研究新进展。2-18F-氟-3-(2(S)-甲氧基氮杂环丁烷基)吡啶(2-18F-F-A-85380)、(R, S)-N-11C-甲基-二苯乙醇酸-3-奎宁环酯(11C-MQNB)和4-18F-氟苄基-右苄替米特(4-18F-FDEX)为烟碱类和毒蕈碱类副交感神经显像剂,11C-多奈哌齐(11C-DNP)和N-[11C]甲基-3[[(二甲氨基)羰基]氧基]-2-(2', 2'-二苯基丙氧基甲基)吡啶(11C-MDDP)为乙酰胆碱酯酶类副交感神经显像剂。其中11C-MQNB、2-18F-F-A-85380研究较为深入,而11C-DNP、11C-MDDP、4-18F-FDEX是具有良好临床应用潜质的显像剂。

     

  • 图  1  心脏副交感神经正电子显像剂及其作用靶点

    CAT: 胆碱乙酰转移酶; VAChT: 囊泡乙酰胆碱转运蛋白; CHT: 钠依赖性载体; Ach: 乙酰胆碱; AchE: 乙酰胆碱酯酶; MR: 毒蕈碱受体; NR: 烟碱受体.

    Figure  1.  Cardiac parasympathetic positron imaging agents and their targets.

    图  2  11C-多奈哌齐

    Figure  2.  11C-donepezil.

    图  3  N-11C-甲基-3[[(二甲氨基)羰基]氧基]-2-(2', 2'-二苯基丙氧基甲基)吡啶

    Figure  3.  N-11C-methyl-3-[[(dimethylamino)carbonyl] oxy]-2-(2', 2'-diphenylpropi-onoxymethyl) pyridinium.

    图  4  2-18F-氟-3-[2(S)-甲氧基氮杂环丁烷基]吡啶

    Figure  4.  2-18F-fluoro-3-[2(S)-2-azetidinyl-methoxy] pyridine.

    图  5  (R,S)-N-11C-甲基-二苯乙醇酸-3-奎宁环酯

    Figure  5.  (R, S)-N-11C-Methyl-quinuclidin-3-yl benzilate.

    图  6  4-18F-氟代苄基-右苄替米特

    Figure  6.  4-18F-fluorobenzyl-dexetimide.

  • [1] Battipaglia I, Lanza GA. The Autonomic Nervous System of the Heart[M]// Autonomic Innervation of the Heart. Berlin, Heidelberg: Springer, 2015: 1-12.
    [2] Triposkiadis F, Karayannis G, Giamouzis G, et al. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications[J]. J Am Coll Cardiol, 2009, 54(19): 1747-62. doi: 10.1016/j.jacc.2009.05.015
    [3] Zipes DP. Heart-brain interactions in cardiac arrhythmias: role of the autonomic nervous system[J]. Cleve Clin J Med, 2008, 75(Suppl 2): S94-6.
    [4] Olshansky B, Sabbah HN, Hauptman PJ, et al. Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy[J]. Circulation, 2008, 118(8): 863-71. doi: 10.1161/CIRCULATIONAHA.107.760405
    [5] Brack KE, Winter J, Ng GA. Mechanisms underlying the autonomic modulation of ventricular fibrillation initiation-tentative prophylactic properties of vagus nerve stimulation on malignant arrhythmias in heart failure[J]. Heart Fail Rev, 2013, 18(4): 389-408. doi: 10.1007/s10741-012-9314-2
    [6] Le Guludec D, Delforge J, Syrota A, et al. In vivo quantification of myocardial muscarinic receptors in heart transplant patients[J]. Circulation, 1994, 90(1): 172-8. doi: 10.1161/01.CIR.90.1.172
    [7] Le Guludec D, Cohen- Solal A, Delforge J, et al. Increased myocardial muscarinic receptor density in idiopathic dilated cardiomyopathy: an in vivo PET study[J]. Circulation, 1997, 96 (10): 3416-22. doi: 10.1161/01.CIR.96.10.3416
    [8] Bucerius J, Joe AY, Schmaljohann J, et al. Feasibility of 2-deoxy-2-[18F]fluoro- D- glucose-A85380- PET for imaging of human cardiac nicotinic acetylcholine receptors in vivo[J]. Clin Res Cardiol, 2006, 95(2): 105-9. doi: 10.1007/s00392-006-0342-6
    [9] Boutagy NE, Sinusas AJ. Recent advances and clinical applications of PET cardiac autonomic nervous system imaging[J]. Curr Cardiol Rep, 2017, 19(4): 33. doi: 10.1007/s11886-017-0843-0
    [10] Wang JQ, Miller MA, Mock BH, et al. Facile synthesis and PET imaging of a novel potential heart acetylcholinesterase tracer N-[11C] methyl-3-[[(dimethylamino)carbonyl]oxy]-2-(2', 2'-diphenylpropio-noxymethyl)pyridinium[J]. Bioorg Med Chem Lett, 2005, 15(20): 4510-4. doi: 10.1016/j.bmcl.2005.07.034
    [11] Pain CD, O'Keefe GJ, Ackermann U, et al. Human biodistribution and internal dosimetry of 4-[18F]fluorobenzyl-dexetimide: a PET radiopharmaceutical for imaging muscarinic acetylcholine receptors in the brain and heart[J]. EJNMMI Res, 2020, 10(1): 61. doi: 10.1186/s13550-020-00641-1
    [12] Pauza DH, Saburkina I, Rysevaite K, et al. Neuroanatomy of the murine cardiac conduction system: a combined stereomicroscopic and fluorescence immunohistochemical study[J]. Auton Neurosci, 2013, 176(1-2): 32-47. doi: 10.1016/j.autneu.2013.01.006
    [13] De Vos F, Santens P, Vermeirsch H, et al. Pharmacological evaluation of[11C]donepezil as tracer for visualization of acetylcholinesterase by PET[J]. Nucl Med Biol, 2000, 27(8): 745-7. doi: 10.1016/S0969-8051(00)00166-9
    [14] Gjerløff T, Jakobsen S, Nahimi A, et al. In vivo imaging of human acetylcholinesterase density in peripheral organs using 11C-donepezil: dosimetry, biodistribution, and kinetic analyses[J]. J Nucl Med, 2014, 55(11): 1818-24. doi: 10.2967/jnumed.114.143859
    [15] Gjerløff T, Fedorova T, Knudsen K, et al. Imaging acetylcho-linesterase density in peripheral organs in Parkinson's disease with 11C-donepezil PET[J]. Brain, 2015, 138(3): 653-63. doi: 10.1093/brain/awu369
    [16] Watabe T, Naka S, Ikeda H, et al. Distribution of intravenously administered acetylcholinesterase inhibitor and acetylcholinesterase activity in the adrenal gland: 11C-donepezil PET study in the normal rat[J]. PLoS One, 2014, 9(9): e107427. doi: 10.1371/journal.pone.0107427
    [17] Sullivan JP, Donnelly-Roberts D, Briggs CA, et al. A-85380[3-(2(S)-azetidinylmethoxy) pyridine]: In Vitro pharmacological properties of a novel, high affinity α4β2 nicotinic acetylcholine receptor ligand[J]. Neuropharmacology, 1996, 35(6): 725-34. doi: 10.1016/0028-3908(96)84644-2
    [18] Dollé F. Fluorine-18-labelled fluoropyridines: advances in radio- pharmaceutical design[J]. Curr Pharm Des, 2005, 11(25): 3221-35. doi: 10.2174/138161205774424645
    [19] Dollé F, Valette H, Bottlaender M, et al. Synthesis of 2‐[18F] fluoro-3-[2(S)‐2‐azetidinylmethoxy] pyridine, a highly potent radioligand for in vivo imaging central nicotinic acetylcholine receptors[J]. J Labelled Compd Rad, 1998, 41(5): 451-63. doi: 10.1002/(SICI)1099-1344(199805)41:5<451::AID-JLCR111>3.0.CO;2-R
    [20] Dollé F, Dolci L, Valette H, et al. Synthesis and nicotinic acetylcholine receptor in vivo binding properties of 2-fluoro-3-[2(S)- 2-azetidinylmethoxy]pyridine: a new positron emission tomography ligand for nicotinic receptors[J]. J Med Chem, 1999, 42(12): 2251-9. doi: 10.1021/jm9910223
    [21] Schmaljohann J, Minnerop M, Karwath P, et al. Imaging of central nAChReceptors with 2-[18F]F- A85380: optimized synthesis and in vitro evaluation in Alzheimer's disease[J]. Appl Radiat Isot, 2004, 61 (6): 1235-40. doi: 10.1016/j.apradiso.2004.02.026
    [22] Schmaljohann J, Gündisch D, Minnerop M, et al. A simple and fast method for the preparation of n. c. a. 2-[18F]F-A85380 for human use[J]. Appl Radiat Isot, 2005, 63(4): 433-5.
    [23] Le Guludec D, Delforge J, Dollé F. Imaging the parasympathetic cardiac innervation with PET[M]//Autonomic Innervation of the Heart. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015: 111-135.
    [24] Valette H, Syrota A, Fuseau C. Down-regulation of cardiac muscarinic receptors induced by di-isopropylfluorophosphate[J]. J Nucl Med, 1997, 38(9): 1430-3.
    [25] Delforge J, Pappata S, Millet P, et al. Quantification of benzodiazepine receptors in human brain using PET, [11C] flumazenil, and a single-experiment protocol[J]. J Cereb Blood Flow Metab, 1995, 15(2): 284-300. doi: 10.1038/jcbfm.1995.34
    [26] Delforge J, Le Guludec D, Syrota A, et al. Quantification of myocardial muscarinic receptors with PET in humans[J]. J Nucl Med, 1993, 34(6): 981-91.
    [27] Dollé F, Hinnen F, Vaufrey F, et al. Highly efficient synthesis of[11C] Me-QNB, a selective radioligand for the quantification of the cardiac muscarinic receptors using PET[J]. J Labelled Compd Rad, 2001, 44(5): 337-45. doi: 10.1002/jlcr.460
    [28] Maziere M, Berger G, Godot JM, et al. 11C-methiodide quinuclidinyl benzilate a muscarinic antagonist for in vivo studies of myocardial muscarinic receptors[J]. J Radioanal Chem, 1983, 76(2): 305-9. doi: 10.1007/BF02517595
    [29] Gómez-Vallejo V, González-Esparza M, Llop J. Facile and improved synthesis of[11C]Me-QNB[J]. J Labelled Compd Rad, 2012, 55(13): 470-3. doi: 10.1002/jlcr.2979
    [30] Mazzadi AN, Pineau J, Costes N, et al. Muscarinic receptor upregulation in patients with myocardial infarction: a new paradigm[J]. Circ Cardiovasc Imaging, 2009, 2(5): 365-72. doi: 10.1161/CIRCIMAGING.108.822106
    [31] Hwang DR, Dence CS, McKinnon ZA, et al. Positron labeled muscarinic acetylcholine receptor antagonist: 2- and 4-[18F]fluoro-dexetimide. Syntheses and biodistribution[J]. Int J Radiat Appl Instrum B Nucl Med Biol, 1991, 18(2): 247-52. doi: 10.1016/0883-2897(91)90086-Z
    [32] Rowe CC, Krishnadas N, Ackermann U, et al. PET Imaging of brain muscarinic receptors with 18F- Fluorobenzyl- Dexetimide: a first in human study[J]. Psychiatry Res Neuroimaging, 2021, 316: 111354. doi: 10.1016/j.pscychresns.2021.111354
  • 加载中
图(6)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  70
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-16
  • 刊出日期:  2022-09-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日