留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

基于T2WI影像组学模型可预测低级别胶质瘤1p/19q的缺失状态

刘书涵 刘晓欢 苏侨勇 付国丽 姜聪明 许燕塔

刘书涵, 刘晓欢, 苏侨勇, 付国丽, 姜聪明, 许燕塔. 基于T2WI影像组学模型可预测低级别胶质瘤1p/19q的缺失状态[J]. 分子影像学杂志, 2022, 45(5): 723-728. doi: 10.12122/j.issn.1674-4500.2022.05.18
引用本文: 刘书涵, 刘晓欢, 苏侨勇, 付国丽, 姜聪明, 许燕塔. 基于T2WI影像组学模型可预测低级别胶质瘤1p/19q的缺失状态[J]. 分子影像学杂志, 2022, 45(5): 723-728. doi: 10.12122/j.issn.1674-4500.2022.05.18
LIU Shuhan, LIU Xiaohuan, SU Qiaoyong, FU Guoli, JIANG Congming, XU Yanta. Application of T2WI radiomics to predict 1p/19q status in low-grade gliomas[J]. Journal of Molecular Imaging, 2022, 45(5): 723-728. doi: 10.12122/j.issn.1674-4500.2022.05.18
Citation: LIU Shuhan, LIU Xiaohuan, SU Qiaoyong, FU Guoli, JIANG Congming, XU Yanta. Application of T2WI radiomics to predict 1p/19q status in low-grade gliomas[J]. Journal of Molecular Imaging, 2022, 45(5): 723-728. doi: 10.12122/j.issn.1674-4500.2022.05.18

基于T2WI影像组学模型可预测低级别胶质瘤1p/19q的缺失状态

doi: 10.12122/j.issn.1674-4500.2022.05.18
详细信息
    作者简介:

    刘书涵,硕士,主治医师,E-mail: liushuhanabc@126.com

    通讯作者:

    刘书涵,硕士,主治医师,E-mail: liushuhanabc@126.com

Application of T2WI radiomics to predict 1p/19q status in low-grade gliomas

  • 摘要:   目的  基于磁共振T2WI构建影像组学模型,预测低级别胶质瘤1p/19q缺失状态的价值。  方法  回顾性分析本院经病理证实的154例低级别胶质瘤患者(1p/19q共缺失100例,1p/19q非共缺失54例),按照分层抽样7∶3分成训练集和验证集。使用3D-Slicer软件对肿瘤区域进行手动分割,用pyradiomics进行特征提取。临床资料的分析采用t检验/χ2检验;影像组学特征采用方差法和10折交叉验证的LASSO算法进行筛选,最后建立支持向量机、高斯朴素贝叶斯、K-近邻、逻辑回归模型,采用ROC曲线的曲线下面积值和sklearn分类报告中的参考指标(准确度、敏感度、特异性、F1分数)进行效能评价。  结果  4种模型中,支持向量机的曲线下面积值最高,训练集和验证集分别为0.95、0.91;参考指标中表现最佳为K-近邻,其准确度、敏感度、特异性及F1分数分别为0.87、0.97、0.70、0.91;其次为支持向量机,各项指标与模型平均值相当。  结论  基于T2WI影像组学模型可以有效地预测低级别胶质瘤1p/19q的缺失状态。

     

  • 图  1  LASSO算法对1p/19q共缺失影像组学特征筛选

    A: 特征筛选过程中引入惩罚因子的计算, 本研究取竖条虚线所对应的值(0.008), 纵坐标MSE为均方误差; B: 筛选特征对应的LASSO系数(即纵坐标)随着惩罚因子值的变化情况.

    Figure  1.  LASSO algorithm for screening the features of 1p/19q co-deletion radiomics.

    图  2  14个影像组学特征权重贡献

    Figure  2.  Weight contribution diagram of 14 features.

    图  3  LASSO筛选影像组学特征之间关系的热图

    Figure  3.  The heat map of the relationship between radiomics features screened by LASSO algorithm.

    图  4  4种机器学习模型的ROC曲线

    A: 训练集; B: 验证集.

    Figure  4.  The ROC curves of four machine learning models.

    表  1  患者临床信息及染色体1p/19q共缺失状态

    Table  1.   Clinical information and chromosome 1p/19 co-deletion status [n(%)]

    指标 1p/19q共缺失(n=100) 1p/19q非共缺失(n=54) 合计(n=154)
    年龄(岁, Mean±SD 43.28±13.03 39.85±14.39 42.08±13.58
    性别
      男 49(49.00) 32(59.26) 81(52.59)
      女 51(51.00) 22(40.74) 73(47.41)
    WHO分级
      2级 65(65.00) 37(68.52) 102(66.23)
      3级 35(35.00) 17(31.48) 52(33.77)
    病理学分类*
      星形细胞瘤 - 54(100.00) 54(35.06)
      少突胶质细胞瘤 100(100.00) - 100(64.94)
    *根据2021年WHO中枢神经系统肿瘤分类标准.
    下载: 导出CSV

    表  2  LASSO筛选的影像组学特征

    Table  2.   Radiomics features screened by LASSO algorithm

    序号 特征名称 系数
    feature29 original_firstorder_Skewness -0.1926
    feature35 original_glcm_ClusterShade -0.0539
    feature50 original_glcm_JointEnergy -0.0138
    feature59 original_gldm_DependenceNonUniformityNormalized 0.1181
    feature65 original_gldm_LargeDependenceHighGrayLevelEmphasis 0.0469
    feature92 original_glszm_LargeAreaHighGrayLevelEmphasis -0.1671
    feature100 original_glszm_ZoneEntropy -0.1189
    feature146 wavelet-LLH_glcm_MaximumProbability 0.2001
    feature185 wavelet-LLH_glszm_LargeAreaHighGrayLevelEmphasis 0.1774
    feature215 wavelet-LHL_firstorder_Skewness 0.0645
    feature246 wavelet-LHL_gldm_DependenceVariance 0.0729
    feature392 wavelet-HLL_ firstorder_Kurtosis 0.0173
    feature401 wavelet-HLL_firstorder_Skewness 0.0517
    feature418 wavelet-HLL_glcm_Imc1 -0.0879
    下载: 导出CSV

    表  3  机器学习模型的效能评价指标

    Table  3.   Effectiveness evaluation index of machine learning models

    模型 准确度 敏感度 特异性 F1分数
    SVM 0.83 0.93 0.64 0.87
    GNB 0.72 0.83 0.52 0.79
    KNN 0.87 0.97 0.70 0.91
    LR 0.83 0.90 0.70 0.87
    平均* 0.81 0.91 0.64 0.86
    *4种机器学习模型单一指标的均值.
    下载: 导出CSV
  • [1] Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-51. doi: 10.1093/neuonc/noab106
    [2] Anshit G. Erratum. The T2-FLAIR-mismatch sign as an imaging biomarker for IDH and 1p/19q status in diffuse low-grade gliomas: a systematic review with a Bayesian approach to evaluation of diagnostic test performance[J]. Neurosurg Focus, 2020, 48(5): E10. doi: 10.3171/2020.3.FOCUS19660a
    [3] Yogananda CGB, Shah BR, Yu FF, et al. A novel fully automated MRI-based deep-learning method for classification of 1p/19q co-deletion status in brain gliomas[J]. Neuro Oncol Adv, 2021, 2 (Supplement_4): iv42-8.
    [4] de Biase D, Acquaviva G, Visani M, et al. Next-generation sequencing panel for 1p/19q codeletion and IDH1-IDH2 mutational analysis uncovers mistaken overdiagnoses of 1p/19q codeletion by FISH[J]. J Mol Diagn, 2021, 23(9): 1185-94. doi: 10.1016/j.jmoldx.2021.06.004
    [5] Riche M, Amelot A, Peyre M, et al. Complications after frame-based stereotactic brain biopsy: a systematic review[J]. Neurosurg Rev, 2021, 44(1): 301-7. doi: 10.1007/s10143-019-01234-w
    [6] Eckel-Passow JE, Lachance DH, Molinaro AM, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors[J]. N Engl J Med, 2015, 372(26): 2499-508. doi: 10.1056/NEJMoa1407279
    [7] van Lent DI, van Baarsen KM, Snijders TJ, et al. Radiological differences between subtypes of WHO 2016 grade Ⅱ-Ⅲ gliomas: a systematic review and meta-analysis[J]. Neuro Oncol Adv, 2020, 2 (1): vdaa044. doi: 10.1093/noajnl/vdaa044
    [8] 潘婷, 苏春秋, 张璇, 等. 常规MRI特征在预测弥漫性低级别胶质瘤1p/19q缺失状态的应用价值[J]. 临床放射学杂志, 2020, 39(6): 1189-94. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFS202006036.htm
    [9] 樊建坤, 程勇, 王腾, 等. T2-FLAIR影像组学预测弥漫性较低级别胶质瘤1p/19q缺失状态的价值[J]. 中国医学影像学杂志, 2021, 29 (5): 425-9. doi: 10.3969/j.issn.1005-5185.2021.05.003
    [10] Lasocki A, Gaillard F, Gorelik A, et al. MRI features can predict 1p/ 19q status in intracranial gliomas[J]. AJNR Am J Neuroradiol, 2018, 39(4): 687-92. doi: 10.3174/ajnr.A5572
    [11] Fan ZW, Sun ZY, Fang SY, et al. Preoperative radiomics analysis of 1p/19q status in WHO grade Ⅱ gliomas[J]. Front Oncol, 2021, 11: 616740. doi: 10.3389/fonc.2021.616740
    [12] Kong ZR, Jiang CD, Zhang YW, et al. Thin-slice magnetic resonance imaging-based radiomics signature predicts chromosomal 1p/19q Co-deletion status in grade Ⅱ and Ⅲ gliomas[J]. Front Neurol, 2020, 11: 551771. doi: 10.3389/fneur.2020.551771
    [13] Kocak B, Durmaz ES, Ates E, et al. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status[J]. Eur Radiol, 2020, 30(2): 877-86. doi: 10.1007/s00330-019-06492-2
    [14] Sarvamangala DR, Kulkarni RV. Convolutional neural networks in medical image understanding: a survey[J]. Evol Intel, 2022, 15(1): 1-22. doi: 10.1007/s12065-020-00540-3
    [15] Maximov Ⅱ, Vellmer S. Isotropically weighted intravoxel incoherent motion brain imaging at 7T[J]. Magn Reson Imaging, 2019, 57: 124-32. doi: 10.1016/j.mri.2018.11.007
    [16] Nuessle NC, Behling F, Tabatabai G, et al. ADC-based stratification of molecular glioma subtypes using high b-value diffusion-weighted imaging[J]. J Clin Med, 2021, 10(16): 3451. doi: 10.3390/jcm10163451
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  116
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-06
  • 刊出日期:  2022-09-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日