留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

H反射和功能磁共振成像分析膀胱充盈及控尿机制的神经功能学研究进展

黄源兴 刘春晓

黄源兴, 刘春晓. H反射和功能磁共振成像分析膀胱充盈及控尿机制的神经功能学研究进展[J]. 分子影像学杂志, 2022, 45(2): 308-312. doi: 10.12122/j.issn.1674-4500.2022.02.30
引用本文: 黄源兴, 刘春晓. H反射和功能磁共振成像分析膀胱充盈及控尿机制的神经功能学研究进展[J]. 分子影像学杂志, 2022, 45(2): 308-312. doi: 10.12122/j.issn.1674-4500.2022.02.30
HUANG Yuanxing, LIU Chunxiao. Advances in neurofunctional studies of bladder filling and urinary control mechanisms by H-reflex and functional magnetic resonance imaging[J]. Journal of Molecular Imaging, 2022, 45(2): 308-312. doi: 10.12122/j.issn.1674-4500.2022.02.30
Citation: HUANG Yuanxing, LIU Chunxiao. Advances in neurofunctional studies of bladder filling and urinary control mechanisms by H-reflex and functional magnetic resonance imaging[J]. Journal of Molecular Imaging, 2022, 45(2): 308-312. doi: 10.12122/j.issn.1674-4500.2022.02.30

H反射和功能磁共振成像分析膀胱充盈及控尿机制的神经功能学研究进展

doi: 10.12122/j.issn.1674-4500.2022.02.30
详细信息
    作者简介:

    黄源兴,在读硕士研究生,E-mail: 852691657@qq.com

    通讯作者:

    刘春晓,博士,主任医师,E-mail: liuchx888@163.com

Advances in neurofunctional studies of bladder filling and urinary control mechanisms by H-reflex and functional magnetic resonance imaging

  • 摘要: 膀胱作为泌尿系统的主要器官之一,具有储尿和排尿两大重要功能。调控这两大功能的神经传导通路非常复杂,涉及到大脑、脊髓和外周神经系统等多个层次,并由多种神经递质共同介导。在过去的20年里,电生理学技术和功能磁共振成像技术逐渐成为神经功能学领域内研究人类病理或生理状态的有力手段,利用这两项技术来记录和分析膀胱储尿排尿行为的大脑调控机制是可行的,两者可以帮助我们更好地理解控尿相关的神经通路和大脑区域的活动与特定功能之间的关系。本文就电生理学技术和功能磁共振成像技术方面,对膀胱及原位新膀胱的充盈和储尿控尿机制的神经功能学研究进展作一综述。

     

  • [1] Fry C, Brading AF, Hussain M, et al. Incontinence[M]. UK: Plymouth, Health Publication Ltd., 2005.
    [2] Anthonioz Y, Vukovic J, Mancinetti M. Médicaments et incontinence urinaire : faut-il y penser[J]? Revue Médicale Suisse, 2021, 17 (749): 1521-5. doi: 10.53738/REVMED.2021.17.749.1521
    [3] Hoffmann P. Beitrag zur kenntnis der menschlichen reflexe mit besonderer berucksichtigung der elektrischen erscheinungen[J]. Arch. Anat. Physiol, 1910, 1: 223-46.
    [4] Hoffmann P. Uber Die beziehungen der sehnenreflexe zur willkürlichen bewegung und zum tonus[J]. Z Biol, 1918, 68: 351-70.
    [5] Jerath N, Kimura J. F wave, A wave, H reflex, and blink reflex[J]. Handb Clin Neurol, 2019, 160: 225-39.
    [6] de Groat WC, Nadelhaft I, Milne RJ, et al. Organization of the sacral parasympathetic reflex pathways to the urinary bladder and large intestine[J]. J Auton Nerv Syst, 1981, 3(2/3/4): 135-60.
    [7] de GWC. Anatomy of the central neural pathways controlling the lower urinary tract[J]. Eur Urol, 1998, 34(Suppl 1): 2-5.
    [8] McMahon SB. Sensory-motor integration in urinary bladder function [J]. Prog Brain Res, 1986, 67: 245-53.
    [9] Häbler HJ, Jänig W, Koltzenburg M. Myelinated primary afferents of the sacral spinal cord responding to slow filling and distension of the cat urinary bladder[J]. J Physiol, 1993, 463: 449-60. doi: 10.1113/jphysiol.1993.sp019604
    [10] Inghilleri M, Carbone A, Pedace F, et al. Bladder filling inhibits somatic spinal motoneurones[J]. Clin Neurophysiol, 2001, 112(12): 2255-60. doi: 10.1016/S1388-2457(01)00674-5
    [11] Porter RW, Krell M. Alterations in the H-reflex in the paraplegic induced by bladder distention[J]. Paraplegia, 1976, 14(2): 105-14.
    [12] Jankowska E, Padel Y, Tanaka R. Projections of pyramidal tract cells to alpha-motoneurones innervating hind-limb muscles in the monkey[J]. J Physiol, 1975, 249(3): 637-67. doi: 10.1113/jphysiol.1975.sp011035
    [13] Koley BN, Das AK, Koley J. Viscero-somatic reflexes following distension of urinary bladder in cats: role of supraspinal neuraxis [J]. Experientia, 1984, 40(7): 689-90. doi: 10.1007/BF01949724
    [14] Cadden SW, Morrison JF. Effects of visceral distension on the activities of neurones receiving cutaneous inputs in the rat lumbar dorsal horn; comparison with effects of remote noxious somatic stimuli[J]. Brain Res, 1991, 558(1): 63-74. doi: 10.1016/0006-8993(91)90714-7
    [15] Schondorf R, Laskey W, Polosa C. Upper thoracic sympathetic neuron responses to input from urinary bladder afferents[J]. Am J Physiol, 1983, 245(3): R311-20.
    [16] Weaver LC. Organization of sympathetic responses to distension of urinary bladder[J]. Am J Physiol, 1985, 248(2 Pt 2): R236-40.
    [17] Hautmann RE, Egghart G, Frohneberg D, et al. The ileal neobladder [J]. J Urol, 1988, 139(1): 39-42. doi: 10.1016/S0022-5347(17)42283-X
    [18] Xu K, Liu CX, Zheng SB, et al. Orthotopic detaenial sigmoid neobladder after radical cystectomy: technical considerations, complications and functional outcomes[J]. J Urol, 2013, 190(3): 928-34. doi: 10.1016/j.juro.2013.03.072
    [19] Palleschi G, Conte A, Pastore AL, et al. Does the neobladder filling modulate soleus H reflex?[J]. Clin Neurophysiol, 2014, 125(2): 425-7. doi: 10.1016/j.clinph.2013.06.027
    [20] Christianson JA, Liang RM, Ustinova EE, et al. Convergence of bladder and colon sensory innervation occurs at the primary afferent level[J]. PAIN, 2007, 128(3): 235-43. doi: 10.1016/j.pain.2006.09.023
    [21] Fitzgerald JJ, Ustinova E, Koronowski KB, et al. Evidence for the role of mast cells in colon-bladder cross organ sensitization[J]. Auton Neurosci, 2013, 173(1/2): 6-13.
    [22] 张林医, 崔现成. 磁共振功能成像技术在临床医学中的应用综述[J]. 医疗装备, 2013, 26(4): 7-9. doi: 10.3969/j.issn.1002-2376.2013.04.004
    [23] Buerk DG, Ances BM, Greenberg JH, et al. Temporal dynamics of brain tissue nitric oxide during functional forepaw stimulation in rats[J]. NeuroImage, 2003, 18(1): 1-9. doi: 10.1006/nimg.2002.1314
    [24] St Lawrence KS, Ye FQ, Lewis BK, et al. Measuring the effects of indomethacin on changes in cerebral oxidative metabolism and cerebral blood flow during sensorimotor activation[J]. Magn Reson Med, 2003, 50(1): 99-106. doi: 10.1002/mrm.10502
    [25] Faraci FM, Brian JE Jr. Nitric oxide and the cerebral circulation[J]. Stroke, 1994, 25(3): 692-703. doi: 10.1161/01.STR.25.3.692
    [26] Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain[J]. J Cereb Blood Flow Metab, 2001, 21(10): 1133-45. doi: 10.1097/00004647-200110000-00001
    [27] Attwell D, Iadecola C. The neural basis of functional brain imaging signals[J]. Trends Neurosci, 2002, 25(12): 621-5. doi: 10.1016/S0166-2236(02)02264-6
    [28] Kim SG, Ogawa S. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals[J]. J Cereb Blood Flow Metab, 2012, 32(7): 1188-206. doi: 10.1038/jcbfm.2012.23
    [29] Logothetis NK, Pauls J, Augath M, et al. Neurophysiological investigation of the basis of the fMRI signal[J]. Nature, 2001, 412 (6843): 150-7. doi: 10.1038/35084005
    [30] 应葵, 白净. 血氧水平依赖功能磁共振成像的发展状况[J]. 国外医学: 生物医学工程分册, 2004, 27(3): 145-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GWSW200403004.htm
    [31] 黄菊英, 李海云, 王春燕, 等. 血氧水平依赖的脑功能磁共振成像的发展[J]. 医疗卫生装备, 2008, 29(8): 30-2. doi: 10.3969/j.issn.1003-8868.2008.08.011
    [32] Fowler CJ, Griffiths D, de Groat WC. The neural control of micturition[J]. Nat Rev Neurosci, 2008, 9(6): 453-66. doi: 10.1038/nrn2401
    [33] Griffiths DJ, Fowler CJ. The micturition switch and its forebrain influences[J]. Acta Physiol (Oxf), 2013, 207(1): 93-109. doi: 10.1111/apha.12019
    [34] Holstege G. Micturition and the soul[J]. J Comp Neurol, 2005, 493 (1): 15-20. doi: 10.1002/cne.20785
    [35] Tai CF, Wang JC, Jin T, et al. Brain switch for reflex micturition control detected by FMRI in rats[J]. J Neurophysiol, 2009, 102(5): 2719-30. doi: 10.1152/jn.00700.2009
    [36] Barrington FJF. The component reflexes of micturition in the catparts i and ii[J]. Brain, 1931, 54(2): 177-88. doi: 10.1093/brain/54.2.177
    [37] Craig AD. Interoception: the sense of the physiological condition of the body[J]. Curr Opin Neurobiol, 2003, 13(4): 500-5. doi: 10.1016/S0959-4388(03)00090-4
    [38] Kuhtz-Buschbeck JP, van der Horst C, Pott C, et al. Cortical representation of the urge to void: a functional magnetic resonance imaging study[J]. J Urol, 2005, 174(4 Pt 1): 1477-81.
    [39] Griffiths D, Derbyshire S, Stenger A, et al. Brain control of normal and overactive bladder[J]. J Urol, 2005, 174(5): 1862-7. doi: 10.1097/01.ju.0000177450.34451.97
    [40] Griffiths DJ, Tadic SD, Schaefer W, et al. Cerebral control of the lower urinary tract: how age-related changes might predispose to urge incontinence[J]. NeuroImage, 2009, 47(3): 981-6. doi: 10.1016/j.neuroimage.2009.04.087
    [41] Pfisterer MHD, Griffiths DJ, Schaefer W, et al. The effect of age on lower urinary tract function: a study in women[J]. J Am Geriatr Soc, 2006, 54(3): 405-12. doi: 10.1111/j.1532-5415.2005.00613.x
    [42] Pfisterer MHD, Griffiths DJ, Schaefer W, et al. The effect of age on lower urinary tract function: a study in women[J]. J Am Geriatr Soc, 2006, 54(3): 405-12. doi: 10.1111/j.1532-5415.2005.00613.x
    [43] Kavia RBC, Dasgupta R, Fowler CJ. Functional imaging and the central control of the bladder[J]. J Comp Neurol, 2005, 493(1): 27-32. doi: 10.1002/cne.20753
    [44] Andrew J, Nathan PW. Lesions on the anterior frontal lobes and disturbances of micturition and defaecation[J]. Brain, 1964, 87: 233-62. doi: 10.1093/brain/87.2.233
    [45] Griffiths DJ, Apostolidis A. Neurological control of the bladder in health and disease[M]//Fowler CJ, Panicker JN, Emmanuel A. eds. Pelvic Organ Dysfunction in Neurological Disease. Cambridge: Cambridge University Press: 1-24.
    [46] Lei D, Ma J, Du XX, et al. Spontaneous brain activity changes in children with primary monosymptomatic nocturnal enuresis: a resting-state fMRI study[J]. Neurourol Urodyn, 2012, 31(1): 99-104. doi: 10.1002/nau.21205
    [47] Damasio AR. The somatic marker hypothesis and the possible functions of the prefrontal cortex[J]. Philos Trans R Soc Lond B Biol Sci, 1996, 351(1346): 1413-20. doi: 10.1098/rstb.1996.0125
    [48] Bechara A, Damasio H, Damasio AR. Emotion, decision making and the orbitofrontal cortex[J]. Cereb Cortex, 2000, 10(3): 295-307. doi: 10.1093/cercor/10.3.295
    [49] Blok BF, Willemsen AT, Holstege G. A PET study on brain control of micturition in humans[J]. Brain, 1997, 120 (Pt 1): 111-21.
    [50] Athwal BS, Berkley KJ, Hussain I, et al. Brain responses to changes in bladder volume and urge to void in healthy men[J]. Brain, 2001, 124(Pt 2): 369-77.
    [51] Griffiths D, Tadic SD. Bladder control, urgency, and urge incontinence: evidence from functional brain imaging[J]. Neurourol Urodyn, 2008, 27(6): 466-74. doi: 10.1002/nau.20549
    [52] Tadic SD, Griffiths D, Schaefer W, et al. Brain activity underlying impaired continence control in older women with overactive bladder [J]. Neurourol Urodyn, 2012, 31(5): 652-8. doi: 10.1002/nau.21240
    [53] Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea[J]. NeuroImage, 2007, 37(4): 1083-90, 1097-9.
    [54] Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to behaviour[J]. Brain, 1995, 118 (Pt 1): 279-306.
    [55] Critchley HD, Mathias CJ, Josephs O, et al. Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence[J]. Brain, 2003, 126(Pt 10): 2139-52.
    [56] Wager TD, Waugh CE, Lindquist M, et al. Brain mediators of cardiovascular responses to social threat: part Ⅰ: reciprocal dorsal and ventral sub-regions of the medial prefrontal cortex and heart-rate reactivity[J]. NeuroImage, 2009, 47(3): 821-35. doi: 10.1016/j.neuroimage.2009.05.043
    [57] Seseke S, Baudewig J, Kallenberg K, et al. Voluntary pelvic floor muscle control: an fMRI study[J]. NeuroImage, 2006, 31(4): 1399-407. doi: 10.1016/j.neuroimage.2006.02.012
    [58] Kuhtz-Buschbeck JP, van der Horst C, Wolff S, et al. Activation of the supplementary motor area (SMA) during voluntary pelvic floor muscle contractions: an fMRI study[J]. NeuroImage, 2007, 35(2): 449-57. doi: 10.1016/j.neuroimage.2006.12.032
    [59] Schrum A, Wolff S, van der Horst C, et al. Motor cortical representation of the pelvic floor muscles[J]. J Urol, 2011, 186(1): 185-90. doi: 10.1016/j.juro.2011.03.001
    [60] Tadic SD, Tannenbaum C, Resnick NM, et al. Brain responses to bladder filling in older women without urgency incontinence[J]. Neurourol Urodyn, 2013, 32(5): 435-40. doi: 10.1002/nau.22320
    [61] Kavia R, Dasgupta R, Critchley H, et al. A functional magnetic resonance imaging study of the effect of sacral neuromodulation on brain responses in women with Fowler's syndrome[J]. BJU Int, 2010, 105(3): 366-72. doi: 10.1111/j.1464-410X.2009.08819.x
    [62] Nieuwenhuijzen JA, de Vries RR, Bex A, et al. Urinary diversions after cystectomy: the association of clinical factors, complications and functional results of four different diversions[J]. Eur Urol, 2008, 53(4): 834-44. doi: 10.1016/j.eururo.2007.09.008
    [63] 肖亚军, 张龙. 根治性膀胱切除术及尿流改道的认知及体会[J]. 临床泌尿外科杂志, 2016, 31(5): 393-7. https://www.cnki.com.cn/Article/CJFDTOTAL-LCMW201605001.htm
  • 加载中
计量
  • 文章访问数:  138
  • HTML全文浏览量:  68
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-28
  • 网络出版日期:  2022-04-28
  • 刊出日期:  2022-03-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日