留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

前列腺癌靶向超声造影剂的研究进展

王慧杰 红华 梁丹艳

王慧杰, 红华, 梁丹艳. 前列腺癌靶向超声造影剂的研究进展[J]. 分子影像学杂志, 2022, 45(2): 303-307. doi: 10.12122/j.issn.1674-4500.2022.02.29
引用本文: 王慧杰, 红华, 梁丹艳. 前列腺癌靶向超声造影剂的研究进展[J]. 分子影像学杂志, 2022, 45(2): 303-307. doi: 10.12122/j.issn.1674-4500.2022.02.29
WANG Huijie, HONG Hua, LIANG Danyan. Advances in targeted ultrasound contrast agents for prostate cancer[J]. Journal of Molecular Imaging, 2022, 45(2): 303-307. doi: 10.12122/j.issn.1674-4500.2022.02.29
Citation: WANG Huijie, HONG Hua, LIANG Danyan. Advances in targeted ultrasound contrast agents for prostate cancer[J]. Journal of Molecular Imaging, 2022, 45(2): 303-307. doi: 10.12122/j.issn.1674-4500.2022.02.29

前列腺癌靶向超声造影剂的研究进展

doi: 10.12122/j.issn.1674-4500.2022.02.29
基金项目: 

内蒙古自治区关键技术攻关计划项目 2019GG101

详细信息
    作者简介:

    王慧杰,在读硕士研究生,E-mail: 13847302224@163.com

    通讯作者:

    红华,博士,主任医师,E-mail: 6622306hong@163.com

Advances in targeted ultrasound contrast agents for prostate cancer

  • 摘要: 前列腺癌是泌尿系统常见的恶性肿瘤之一,在我国前列腺癌的发病率逐年升高。前列腺癌早期没有明显的临床表现,病情隐匿,容易恶化及移转,当患者出现症状就诊时往往已是中晚期甚至出现了远处转移,错过了最佳的治疗时机,前列腺癌的预后与是否及时诊断密切相关。超声分子成像是通过将目标分子靶向标记物连接到以微气泡为载体的声学造影剂表面制备成的靶向声学造影剂,可显著提高疾病诊断和治疗效果,且对正常组织器官毒副作用较小。超声造影剂所具备的特殊结构和性质,使其可经过一系列的化学修饰,将治疗基因和化疗药物递送至肿瘤区域,提高基因转染效率和药物疗效。本文就前列腺癌靶向超声造影剂在前列腺癌的诊断与治疗方面,阐述几种常用的靶向配体、及其对病灶的治疗方式、多模态成像与治疗的最新进展情况。

     

  • [1] Center MM, Jemal A, Lortet-Tieulent J, et al. International variation in prostate cancer incidence and mortality rates[J]. Eur Urol, 2012, 61(6): 1079-92. doi: 10.1016/j.eururo.2012.02.054
    [2] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA A Cancer J Clin, 2020, 70(1): 7-30. doi: 10.3322/caac.21590
    [3] Kimura T, Egawa S. Epidemiology of prostate cancer in Asian countries[J]. Int J Urol, 2018, 25(6): 524-31. doi: 10.1111/iju.13593
    [4] Gessner R, Dayton PA. Advances in molecular imaging with ultrasound[J]. Mol Imaging, 2010, 9(3): 117-27.
    [5] Chong WK, Papadopoulou V, Dayton PA. Imaging with ultrasound contrast agents: current status and future[J]. Abdom Radiol (NY), 2018, 43(4): 762-72. doi: 10.1007/s00261-018-1516-1
    [6] Gomes IM, Rocha SM, Gaspar C, et al. Knockdown of STEAP1 inhibits cell growth and induces apoptosis in LNCaP prostate cancer cells counteracting the effect of androgens[J]. Med Oncol, 2018, 35(3): 40. doi: 10.1007/s12032-018-1100-0
    [7] Sanchez-Pulido L, Rojas AM, Valencia A, et al. ACRATA: a novel electron transfer domain associated to apoptosis and cancer[J]. BMC Cancer, 2004, 4: 98. doi: 10.1186/1471-2407-4-98
    [8] Valenti MT, Dalle Carbonare L, Donatelli L, et al. STEAP mRNA detection in serum of patients with solid tumours[J]. Cancer Lett, 2009, 273(1): 122-6. doi: 10.1016/j.canlet.2008.07.037
    [9] Esmaeili SA, Nejatollahi F, Sahebkar A. Inhibition of intercellular communication between prostate cancer cells by A specific anti-STEAP-1 single chain antibody[J]. Anticancer Agents Med Chem, 2018, 18(12): 1674-9.
    [10] Yuan Y, Liu Y, Zhu XM, et al. Six-transmembrane epithelial antigen of the prostate-1 (STEAP-1)-targeted ultrasound imaging microbubble improves detection of prostate cancer in vivo[J]. J Ultrasound Med, 2019, 38(2): 299-305. doi: 10.1002/jum.14689
    [11] O'Keefe DS, Bacich DJ, Heston WDW. Comparative analysis of prostate-specific membrane antigen (PSMA) versus a prostate-specific membrane antigen-like gene[J]. Prostate, 2004, 58 (2): 200-10. doi: 10.1002/pros.10319
    [12] Kumar A, Mastren T, Wang B, et al. Design of a small-molecule drug conjugate for prostate cancer targeted theranostics[J]. Bioconjug Chem, 2016, 27(7): 1681-9. doi: 10.1021/acs.bioconjchem.6b00222
    [13] Sanna V, Pintus G, Bandiera P, et al. Development of polymeric microbubbles targeted to prostate-specific membrane antigen as prototype of novel ultrasound contrast agents[J]. Mol Pharm, 2011, 8(3): 748-57. doi: 10.1021/mp100360g
    [14] Perera RH, de Leon A, Wang XN, et al. Real time ultrasound molecular imaging of prostate cancer with PSMA-targeted nanobubbles[J]. Nanomedicine, 2020, 28: 102213. doi: 10.1016/j.nano.2020.102213
    [15] Fan XZ, Wang LF, Guo YL, et al. Ultrasonic nanobubbles carrying anti-PSMA nanobody: construction and application in prostate cancer-targeted imaging[J]. PLoS One, 2015, 10(6): e0127419. doi: 10.1371/journal.pone.0127419
    [16] Fan XZ, Guo YL, Wang LF, et al. Diagnosis of prostate cancer using anti-PSMA aptamer A10-3.2-oriented lipid nanobubbles[J]. Int J Nanomed, 2016, 11: 3939-50. doi: 10.2147/IJN.S112951
    [17] Baek SE, Lee KH, Park YS, et al. RNA aptamer-conjugated liposome as an efficient anticancer drug delivery vehicle targeting cancer cells in vivo[J]. J Control Release, 2014, 196: 234-42. doi: 10.1016/j.jconrel.2014.10.018
    [18] Dougherty CA, Cai WB, Hong H. Applications of aptamers in targeted imaging: state of the art[J]. Curr Top Med Chem, 2015, 15 (12): 1138-52. doi: 10.2174/1568026615666150413153400
    [19] Gu FF, Hu CL, Xia QM, et al. Aptamer-conjugated multi-walled carbon nanotubes as a new targeted ultrasound contrast agent for the diagnosis of prostate cancer[J]. J Nanopart Res, 2018, 20(11): 303. doi: 10.1007/s11051-018-4407-z
    [20] Russo G, Mischi M, Scheepens W, et al. Angiogenesis in prostate cancer: onset, progression and imaging[J]. BJU Int, 2012, 110(11 Pt C): E794-E808.
    [21] Fischer T, Thomas A, Tardy I, et al. Vascular endothelial growth factor receptor 2-specific microbubbles for molecular ultrasound detection of prostate cancer in a rat model[J]. Invest Radiol, 2010, 45(10): 675-84. doi: 10.1097/RLI.0b013e3181efd6b2
    [22] Smeenge M, Tranquart F, Mannaerts CK, et al. First-in-human ultrasound molecular imaging with a VEGFR2-specific ultrasound molecular contrast agent (BR55) in prostate cancer: a safety and feasibility pilot study[J]. Invest Radiol, 2017, 52(7): 419-27. doi: 10.1097/RLI.0000000000000362
    [23] Zhao M, Zhu YK, Zhang YH, et al. CDCP1-targeted nanoparticles encapsulating phase-shift perfluorohexan for molecular US imaging in vitro[J]. Clin Hemorheol Microcirc, 2022, 80(1): 25-35. doi: 10.3233/CH-200900
    [24] Al-Mahrouki AA, Iradji S, Tran WT, et al. Cellular characterization of ultrasound-stimulated microbubble radiation enhancement in a prostate cancer xenograft model[J]. Dis Model Mech, 2014, 7(3): 363-72.
    [25] Stride EP, Coussios CC. Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy[J]. Proc Inst Mech Eng Part H J Eng Med, 2010, 224(2): 171-91. doi: 10.1243/09544119JEIM622
    [26] Lentacker I, de Smedt SC, Sanders NN. Drug loaded microbubble design for ultrasound triggered delivery[J]. Soft Matter, 2009, 5 (11): 2161. doi: 10.1039/b823051j
    [27] Wang LY, Zheng SS. Advances in low-frequency ultrasound combined with microbubbles in targeted tumor therapy[J]. J Zhejiang Univ Sci B, 2019, 20(4): 291-9. doi: 10.1631/jzus.B1800508
    [28] Yang YU, Bai WK, Chen YN, et al. Optimization of low-frequency low-intensity ultrasound-mediated microvessel disruption on prostate cancer xenografts in nude mice using an orthogonal experimental design[J]. Oncol Lett, 2015, 10(5): 2999-3007. doi: 10.3892/ol.2015.3716
    [29] Lopez W, Nguyen N, Cao J, et al. Ultrasound therapy, chemotherapy and their combination for prostate cancer[J]. Technol Cancer Res Treat, 2021, 20: 15330338211011965.
    [30] Yang Y, Bai WK, Chen YN, et al. Low-frequency ultrasoundmediated microvessel disruption combined with docetaxel to treat prostate carcinoma xenografts in nude mice: a novel type of chemoembolization[J]. Oncol Lett, 2016, 12(2): 1011-8. doi: 10.3892/ol.2016.4703
    [31] Hou R, Xu YJ, Lu QJ, et al. Effect of low-frequency low-intensity ultrasound with microbubbles on prostate cancer hypoxia[J]. Tumour Biol, 2017, 39(10): 1010428317719275.
    [32] Mullick Chowdhury S, Wang TY, Bachawal S, et al. Ultrasoundguided therapeutic modulation of hepatocellular carcinoma using complementary microRNAs[J]. J Control Release, 2016, 238: 272-80. doi: 10.1016/j.jconrel.2016.08.005
    [33] Altwaijry N, Somani S, Dufès C. Targeted nonviral gene therapy in prostate cancer[J]. Int J Nanomed, 2018, 13: 5753-67. doi: 10.2147/IJN.S139080
    [34] Zhang W, Nan SL, Bai WK, et al. Low-frequency ultrasound combined with microbubbles improves gene transfection in prostate cancer cells in vitro and in vivo[J]. Asia Pac J Clin Oncol, 2022, 18 (1): 93-8. doi: 10.1111/ajco.13521
    [35] Jansson MD, Lund AH. microRNA and cancer[J]. Mol Oncol, 2012, 6(6): 590-610. doi: 10.1016/j.molonc.2012.09.006
    [36] Qin DW, Li HG, Xie HL. Ultrasound-targeted microbubble destruction-mediated miR-205 enhances cisplatin cytotoxicity in prostate cancer cells[J]. Mol Med Rep, 2018, 18(3): 3242-50.
    [37] Mullick Chowdhury S, Lee T, Willmann JK. Ultrasound-guided drug delivery in cancer[J]. Ultrasonography, 2017, 36(3): 171-84. doi: 10.14366/usg.17021
    [38] Bachmeier B, Killian P, Melchart D. The role of curcumin in prevention and management of metastatic disease[J]. Int J Mol Sci, 2018, 19(6): 1716. doi: 10.3390/ijms19061716
    [39] Bessone F, Argenziano M, Grillo G, et al. Low-dose curcuminoidloaded in dextran nanobubbles can prevent metastatic spreading in prostate cancer cells[J]. Nanotechnology, 2019, 30(21): 214004. doi: 10.1088/1361-6528/aaff96
    [40] 杨文波, 郝兰, 王志刚, 等. CREKA肽修饰的载多西他赛脂质体抗前列腺癌靶向研究[J]. 第三军医大学学报, 2020, 42(21): 2107-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DSDX202021005.htm
    [41] Bae YJ, Yoon YI, Yoon TJ, et al. Ultrasound-guided delivery of siRNA and a chemotherapeutic drug by using microbubble complexes: in vitro and in vivo evaluations in a prostate cancer model[J]. Korean J Radiol, 2016, 17(4): 497-508. doi: 10.3348/kjr.2016.17.4.497
    [42] Apfelbeck M, Clevert DA, Ricke J, et al. Contrast enhanced ultrasound (CEUS) with MRI image fusion for monitoring focal therapy of prostate cancer with high intensity focused ultrasound (HIFU)1[J]. Clin Hemorheol Microcirc, 2018, 69(1/2): 93-100.
    [43] Yoon YI, Ha SW, Lee HJ. An ultrasound-responsive dual-modal US/ T1-MRI contrast agent for potential diagnosis of prostate cancer[J]. J Magn Reson Imaging, 2018, 48(6): 1610-6. doi: 10.1002/jmri.26217
    [44] Liu YJ, Bhattarai P, Dai ZF, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chem Soc Rev, 2019, 48(7): 2053-108.
    [45] Ahdoot M, Lebastchi AH, Turkbey B, et al. Contemporary treatments in prostate cancer focal therapy[J]. Curr Opin Oncol, 2019, 31(3): 200-6. doi: 10.1097/CCO.0000000000000515
    [46] Yin TH, Wang K, Qiu C, et al. Simple structural indocyanine greenloaded microbubbles for dual-modality imaging and multisynergistic photothermal therapy in prostate cancer[J]. Nanomedicine, 2020, 28: 102229. doi: 10.1016/j.nano.2020.102229
    [47] Lan MM, Zhu LH, Wang YX, et al. Multifunctional nanobubbles carrying indocyanine green and paclitaxel for molecular imaging and the treatment of prostate cancer[J]. J Nanobiotechnology, 2020, 18(1): 121. doi: 10.1186/s12951-020-00650-1
    [48] Dai LQ, Shen GH, Wang YY, et al. PSMA-targeted melanin-like nanoparticles as a multifunctional nanoplatform for prostate cancer theranostics[J]. J Mater Chem B, 2021, 9(4): 1151-61. doi: 10.1039/D0TB02576C
    [49] Jang Y, Kim D, Lee H, et al. Development of an ultrasound triggered nanomedicine-microbubble complex for chemophotodynamic-gene therapy[J]. Nanomedicine, 2020, 27(1): 102194.
    [50] Pan XT, Wang WW, Huang ZJ, et al. MOF-derived double-layer hollow nanoparticles with oxygen generation ability for multimodal imaging-guided sonodynamic therapy[J]. Angew Chem Int Ed Engl, 2020, 59(32): 13557-61. doi: 10.1002/anie.202004894
  • 加载中
计量
  • 文章访问数:  291
  • HTML全文浏览量:  157
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-23
  • 网络出版日期:  2022-04-28
  • 刊出日期:  2022-03-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日