Progress of multimodality magnetic resonance imaging in diagnosing penumbra of trauma
-
摘要: 创伤半暗带是存在于创伤性脑损伤后损伤核心区外周的一可挽回区域,是影响脑损伤患者预后和后期生活质量的一个重要因素。临床通过早期诊断、及时治疗创伤半暗带,可有效阻止其内的脑组织向有害方向发展,从而达到降低创伤性脑损伤所致的高致残率。多模态磁共振成像技术是一种广泛应用于颅脑疾病诊断的手段,具有分辨率高、精确度高、无侵袭性等优点。利用多模态磁共振技术(弥散加权成像、脑灌注成像、动脉自旋标记成像、磁敏感加权成像及磁共振波谱)能了解创伤半暗带的存在、范围以及其内的物质与能量代谢情况等,为临床选择治疗方案及评估疗效与预后提供客观的影像学依据。随着多模态磁共振技术的发展,界定创伤半暗带的磁共振方法也出现了多样化。本文主要就创伤半暗带与脑损伤病理生理机制、多模态磁共振成像序列、多模态磁共振成像评估创伤半暗带等方面进行综述。Abstract: Traumatic penumbra is a reversible area present in the periphery of the injured core area after traumatic brain injury. It is an important factor affecting the prognosis and later quality of life of patients with brain injury. Through early diagnosis and timely treatment of traumatic penumbra, the brain tissue in it can be effectively prevented from developing in a harmful direction, so as to reduce the high disability rate caused by traumatic brain injury. Multimodal magnetic resonance imaging is widely used in the diagnosis of brain diseases, which has the advantages of high resolution, high accuracy and noninvasiveness. Multimodality magnetic resonance technology (diffusion weighted imaging, cerebral perfusion imaging, arterial spin labeling, susceptibility-weighted imaging and magnetic resonance spectroscopy) can be used to understand the presence and extent of traumatic penumbra and its substance and energy metabolism, providing an objective imaging basis for clinical treatment selection and evaluation of curative effect and prognosis. In recent years, with the development of multi-modal magnetic resonance technology, the magnetic resonance methods to define the traumatic penumbra have also been diversified. This review focuses on the pathophysiological mechanisms of traumatic penumbra and brain injury, multimodality magnetic resonance imaging sequences, and multimodality magnetic resonance imaging to assess traumatic penumbra.
-
Key words:
- brain injury /
- traumatic penumbra /
- magnetic resonance imaging
-
[1] O'Keeffe E, Kelly E, Liu YZ, et al. Dynamic blood-brain barrier regulation in mild traumatic brain injury[J]. J Neurotrauma, 2020, 37(2): 347-56. doi: 10.1089/neu.2019.6483 [2] 陆兆丰, 朱刚毅, 郏建臣, 等. 创伤性脑损伤大鼠半暗带脑组织中Elk1的表达及作用[J]. 新乡医学院学报, 2020, 37(2): 107-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYX202002003.htm [3] 艾莉, 陈海霞, 秦将均, 等. AQP4在创伤性脑水肿中的表达与多模态MRI成像研究[J]. 海南医学院学报, 2020, 26(17): 1353-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYY202017014.htm [4] 任欢欢, 熊翱, 鲁宏. 大鼠脑创伤半暗带水肿与水通道蛋白-4表达的相关性[J]. 中华创伤杂志, 2016, 32(4): 363-9. doi: 10.3760/cma.j.issn.1001-8050.2016.04.018 [5] Rosenfeld JV, Maas AI, Bragge P, et al. Early management of severe traumatic brain injury[J]. Lancet, 2012, 380(9847): 1088-98. doi: 10.1016/S0140-6736(12)60864-2 [6] Ding K, Wang HD, Wu Y, et al. Rapamycin protects against apoptotic neuronal death and improves neurologic function after traumatic brain injury in mice via modulation of the mTOR-p53- Bax axis[J]. J Surg Res, 2015, 194(1): 239-47. doi: 10.1016/j.jss.2014.09.026 [7] 李利锋, 鲁宏. 脑组织半暗带的病理、分子机制及影像表现的研究进展[J]. 国际医学放射学杂志, 2016, 39(1): 18-22. doi: 10.3874/j.issn.1674-1897.2016.01.Z3632 [8] 王凯. 脑创伤周围半暗带的研究进展[J]. 中国医学影像技术, 2012, 28(3): 596-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXX201203060.htm [9] 刘利姗, 欧阳林. 创伤脑区周围"半暗带"的功能磁共振成像研究[J]. 功能与分子医学影像学: 电子版, 2014, 3(4): 550-3. doi: 10.3969/j.issn.2095-2252.2014.04.013 [10] Depreitere B, Aviv R, Symons S, et al. Study of perfusion in and around cerebral contusions by means of computed tomography[M]// Acta Neurochirurgica Supplements. Vienna: Springer Vienna, 2008: 259-262. [11] Wu HM, Huang SC, Vespa P, et al. Redefining the pericontusional penumbra following traumatic brain injury: evidence of deteriorating metabolic derangements based on positron emission tomography[J]. J Neurotrauma, 2013, 30(5): 352-60. doi: 10.1089/neu.2012.2610 [12] 王立一, 王子豪, 范照鑫, 等. 铁代谢在创伤性颅脑损伤中的研究进展[J]. 中国微侵袭神经外科杂志, 2021, 26(3): 133-6. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWQX202103017.htm [13] Abdul-Muneer PM, Chandra N, Haorah J. Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury[J]. Mol Neurobiol, 2015, 51(3): 966-79. doi: 10.1007/s12035-014-8752-3 [14] Salehi A, Zhang JH, Obenaus A. Response of the cerebral vasculature following traumatic brain injury[J]. J Cereb Blood Flow Metab, 2017, 37(7): 2320-39. doi: 10.1177/0271678X17701460 [15] Jha RM, Kochanek PM, Simard JM. Pathophysiology and treatment of cerebral edema in traumatic brain injury[J]. Neuropharmacology, 2019, 145: 230-46. doi: 10.1016/j.neuropharm.2018.08.004 [16] 张瑶, 陈红燕, 史东立, 等. 猫局灶性脑创伤半暗带的MRI研究[J]. 磁共振成像, 2013, 4(2): 125-9. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC201302017.htm [17] Ren HH, Lu H. Dynamic features of brain edema in rat models of traumatic brain injury[J]. NeuroReport, 2019, 30(9): 605-11. doi: 10.1097/WNR.0000000000001213 [18] 宋鸽, 刘晓银, 史新宇, 等. 创伤性脑损伤相关神经炎症的研究进展[J]. 天津医药, 2020, 48(5): 449-54. https://www.cnki.com.cn/Article/CJFDTOTAL-TJYZ202005020.htm [19] Vlodavsky E, Palzur E, Feinsod M, et al. Evaluation of the apoptosis-related proteins of the BCL-2 family in the traumatic penumbra area of the rat model of cerebral contusion, treated by hyperbaric oxygen therapy: a quantitative immunohistochemical study[J]. Acta Neuropathol, 2005, 110(2): 120-6. doi: 10.1007/s00401-004-0946-8 [20] Palzur E, Vlodavsky E, Mulla H, et al. Hyperbaric oxygen therapy for reduction of secondary brain damage in head injury: an animal model of brain contusion[J]. J Neurotrauma, 2004, 21(1): 41-8. doi: 10.1089/089771504772695931 [21] 刘佰运, 郝淑煜, 李欢, 等. 猫脑挫裂伤灶周围"半暗带"影像学结合超微结构的初步研究[J]. 中华神经外科杂志, 2006, 22(11): 666-9. doi: 10.3760/j.issn:1001-2346.2006.11.008 [22] Sathish R, Rajan R, Vupputuri A, et al. Adversarially trained convolutional neural networks for semantic segmentation of ischaemic stroke lesion using multisequence magnetic resonance imaging[C]//2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). July 23-27, 2019. Berlin, Germany. IEEE, 2019: 1010-3. [23] Shen Q, Watts LT, Li W, et al. Magnetic resonance imaging in experimental traumatic brain injury[M]//Methods in Molecular Biology. New York, NY: Springer New York, 2016: 645-658. [24] 陈莉, 王开平, 孙先普, 等. PWI鉴别诊断单发脑转移瘤和高级别胶质瘤的价值分析[J]. 医学影像学杂志, 2018, 28(12): 1966-70. https://www.cnki.com.cn/Article/CJFDTOTAL-XYXZ201812003.htm [25] Kohno N, Okada K, Yamagata S, et al. Distinctive patterns of threedimensional arterial spin-labeled perfusion magnetic resonance imaging in subtypes of acute ischemic stroke[J]. J Stroke Cerebrovasc Dis, 2016, 25(7): 1807-12. doi: 10.1016/j.jstrokecerebrovasdis.2016.03.035 [26] Grade M, Hernandez Tamames JA, Pizzini FB, et al. A neuroradiologist's guide to arterial spin labeling MRI in clinical practice[J]. Neuroradiology, 2015, 57(12): 1181-202. doi: 10.1007/s00234-015-1571-z [27] 林天烨, 有慧, 冯逢, 等. 动脉自旋标记MR技术进展及应用[J]. 中华放射学杂志, 2019, 53(5): 431-4. [28] Haller S, Zaharchuk G, Thomas DL, et al. Arterial spin labeling perfusion of the brain: emerging clinical applications[J]. Radiology, 2016, 281(2): 337-56. doi: 10.1148/radiol.2016150789 [29] Polan RM, Poretti A, Huisman TAGM, et al. Susceptibility-weighted imaging in pediatric arterial ischemic stroke: a valuable alternative for the noninvasive evaluation of altered cerebral hemodynamics[J]. AJNR Am J Neuroradiol, 2015, 36(4): 783-8. doi: 10.3174/ajnr.A4187 [30] Verschuuren S, Poretti A, Buerki S, et al. Susceptibility-weighted imaging of the pediatric brain[J]. Am J Roentgenol, 2012, 198(5): W440-9. doi: 10.2214/AJR.11.8049 [31] Bartnik OBL, Alger JR, Talin B, et al. The clinical utility of proton magnetic resonance spectroscopy in traumatic brain injury: recommendations from the ENIGMA MRS working group[J]. Brain Imaging Behav, 2020, 15(prepublish): 1-22. [32] Veeramuthu V, Seow P, Narayanan V, et al. Neurometabolites alteration in the acute phase of mild traumatic brain injury (mTBI) [J]. Acad Radiol, 2018, 25(9): 1167-77. doi: 10.1016/j.acra.2018.01.005 [33] Kirov Ⅱ, Whitlow CT, Zamora C. Susceptibility-weighted imaging and magnetic resonance spectroscopy in concussion[J]. Neuroimaging Clin N Am, 2018, 28(1): 91-105. doi: 10.1016/j.nic.2017.09.007 [34] 李静, 赵璨, 饶家声, 等. 磁共振波谱在创伤性脑损伤中的应用[J]. 神经损伤与功能重建, 2020, 15(7): 395-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GWKF202007007.htm [35] 卓丽华, 唐春耕, 周明, 等. 1H-磁共振波普成像联合弥散加权成像、3D-动脉内源性标记对急性脑梗死缺血半暗带的评估价值[J]. 中华临床医师杂志: 电子版, 2019, 13(8): 596-602. doi: 10.3877/cma.j.issn.1674-0785.2019.08.007 [36] 夏倩倩, 王希明, 胡春洪. MRI评价缺血半暗带的研究进展[J]. 国际医学放射学杂志, 2018, 41(3): 303-7. https://www.cnki.com.cn/Article/CJFDTOTAL-GWLC201803013.htm [37] 陈水斌, 汤奕林, 欧阳林, 等. 磁共振弥散张量成像在创伤性脑损伤临床诊断和预后评估的应用价值[J]. 医学影像学杂志, 2020, 30(10): 1765-9. https://www.cnki.com.cn/Article/CJFDTOTAL-XYXZ202010004.htm [38] 刘伟, 许克宁. 轻型创伤性脑损伤的功能磁共振成像研究进展[J]. 实用放射学杂志, 2019, 35(4): 663-5. doi: 10.3969/j.issn.1002-1671.2019.04.037 [39] 杨清宁, 郭轶, 戴辉. 轻度脑创伤的MRI新技术应用研究进展[J]. 重庆医学, 2021, 50(8): 1409-13. doi: 10.3969/j.issn.1671-8348.2021.08.032 [40] Lee H, Jung K, Kang DW, et al. Fully automated and real-time volumetric measurement of infarct core and penumbra in diffusionand perfusion-weighted MRI of patients with hyper-acute stroke[J]. J Digit Imaging, 2020, 33(1): 262-72. doi: 10.1007/s10278-019-00222-2 [41] Wetterling F, Chatzikonstantinou E, Tritschler L, et al. Investigating potentially salvageable penumbra tissue in an in vivo model of transient ischemic stroke using sodium, diffusion, and perfusion magnetic resonance imaging[J]. BMC Neurosci, 2016, 17: 82. doi: 10.1186/s12868-016-0316-1 [42] Dejobert M, Cazals X, Annan M, et al. Susceptibility-diffusion mismatch in hyperacute stroke: correlation with perfusion-diffusion mismatch and clinical outcome[J]. J Stroke Cerebrovasc Dis, 2016, 25(7): 1760-6. doi: 10.1016/j.jstrokecerebrovasdis.2016.02.025 [43] Darwish EAF, Abdelhameed-El-Nouby M, Geneidy E. Mapping the ischemic penumbra and predicting stroke progression in acute ischemic stroke: the overlooked role of susceptibility weighted imaging[J]. Insights Imaging, 2020, 11: 6. doi: 10.1186/s13244-019-0810-y [44] Ermine CM, Bivard A, Parsons MW, et al. The ischemic penumbra: from concept to reality[J]. Int J Stroke, 2021, 16(5): 497-509. doi: 10.1177/1747493020975229 [45] Bokkers RPH, Hernandez DA, Merino JG, et al. Whole-brain arterial spin labeling perfusion MRI in patients with acute stroke[J]. Stroke, 2012, 43(5): 1290-4. doi: 10.1161/STROKEAHA.110.589234 [46] 刘利姗. 联合动脉自旋标记灌注成像及扩散加权成像对"创伤性半暗带"的初步研究[D]. 福州: 福建中医药大学, 2015: 1-34. [47] 李利锋, 张坤, 蒋锡丽, 等. 多模态磁共振监测基因干扰治疗脑创伤半暗带的研究[J]. 实用放射学杂志, 2018, 34(1): 128-32. [48] Meoded A, Poretti A, Benson JE, et al. Evaluation of the ischemic penumbra focusing on the venous drainage: the role of susceptibility weighted imaging (SWI) in pediatric ischemic cerebral stroke[J]. J Neuroradiol, 2014, 41(2): 108-16. doi: 10.1016/j.neurad.2013.04.002 [49] Orman G, Valand HA, Huisman TAGM. Advanced multimodality neuroimaging of a giant, thrombosed MCA aneurysm complicated by an acute stroke in a pediatric patient[J]. Radiol Case Rep, 2020, 15(3): 292-7. doi: 10.1016/j.radcr.2019.12.016 [50] Holshouser B, Pivonka-Jones J, Nichols JG, et al. Longitudinal metabolite changes after traumatic brain injury: a prospective pediatric magnetic resonance spectroscopic imaging study[J]. J Neurotrauma, 2019, 36(8): 1352-60. doi: 10.1089/neu.2018.5919 [51] Aaen GS, Holshouser BA, Sheridan C, et al. Magnetic resonance spectroscopy predicts outcomes for children with nonaccidental trauma[J]. Pediatrics, 2010, 125(2): 295-303. doi: 10.1542/peds.2008-3312 [52] 李在雨, 陈云鹏, 杨正月, 等. 创伤性颅脑损伤的氢波谱临床研究[J]. 中国实验诊断学, 2015, 19(6): 909-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZD201506014.htm
点击查看大图
计量
- 文章访问数: 411
- HTML全文浏览量: 221
- PDF下载量: 24
- 被引次数: 0