Advances in the application of deep learning in orthopedics
-
摘要: 深度学习是当前人工智能发展最为迅速的一个分支。深度学习可以在大样本数据中自动提取良好的特征表达,有效提升各种机器学习的任务性能,广泛应用于图像信号处理、计算机视觉和自然语言处理等领域。随着数字影像的发展,深度学习凭借自动提取特征,高效处理高维度医学图像数据的优点,已成为医学图像分析在临床应用的重要技术之一。目前这项技术在分析某些医学影像方面已达到放射科医生水平,如肺结节的检出识别以及对膝关节退变进行级别分类等,这将为计算机科学发展在医疗应用的提供一个新机遇。由于骨科领域疾病种类繁多,图像数据特征清晰,内容复杂丰富,相关的学习任务与应用场景对深度学习提出了新要求。本文将从骨关节关键参数测量、病灶检测、疾病分级、图像分割以及图像配准五大临床图像处理分析任务对深度学习在骨科领域的应用研究进展进行综述,并对其发展趋势进行展望,以供从事骨科相关研究人员作参考。Abstract: Deep learning is currently one of the most rapidly developing branches of artificial intelligence. Deep learning can automatically extract good feature expressions in large sample data, effectively improve the performance of various machine learning tasks, which is widely used in image signal processing, computer vision, and natural language processing. With the development of digital imaging, deep learning has become one of the essential techniques for the clinical application of medical image analysis with the advantages of automatically extracting features and efficiently processing high-dimensional medical image data. At present, this technology has reached the level of radiologists in analyzing certain medical images, such as detecting and recognizing lung nodules and classifying knee joint degeneration, which will provide a new chance for the development of computer science in medical applications. Due to the wide variety of diseases in the orthopedics field, clear image data features, and complex and rich contents in the orthopedic field, related learning tasks and application scenarios put forward a new challenge for deep learning. This article reviews the application research progress of deep learning in orthopedics from five clinical image processing and analysis tasks including bone and joint critical parameter measurement, lesion detection, disease grading, image segmentation, and image registration and outlook the development for the reference of orthopedics-related researchers.
-
[1] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521: 436-44. doi: 10.1038/nature14539 [2] 刘海坤, 王健, 杨嵩, 等. 基于深度学习和二维高斯拟合的视网膜血管管径测量方法[J]. 中国医学物理学杂志, 2019, 36(2): 171-9. doi: 10.3969/j.issn.1005-202X.2019.02.010 [3] Zheng Q, Shellikeri S, Huang H, et al. Deep learning measurement of leg length discrepancy in children based on radiographs[J]. Radiology, 2020, 296(1): 152-8. doi: 10.1148/radiol.2020192003 [4] Ren SQ, He KM, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans PatternAnal Mach Intell, 2017, 39(6): 1137-49. doi: 10.1109/TPAMI.2016.2577031 [5] Yan K, Tang YB, Peng YF, et al. MULAN: multitask universal lesion analysis network for joint lesion detection, tagging, and segmentation[C]//Med Image Comput Comput Assist IntervMICCAI 2019, 2019: 194-202. [6] von Schacky CE, Wilhelm NJ, Schäfer VS, et al. Multitask deep learning for segmentation and classification of primary bone tumors on radiographs[J]. Radiology, 2021, 301(2): 398-406. doi: 10.1148/radiol.2021204531 [7] Choi H, Kim YK, Yoon EJ, et al. Cognitive signature of brain FDG PET based on deep learning: domain transfer from Alzheimer's disease to Parkinson's disease[J]. Eur J Nucl Med Mol Imaging, 2020, 47(2): 403-12. doi: 10.1007/s00259-019-04538-7 [8] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(4): 640-51. doi: 10.1109/TPAMI.2016.2572683 [9] Tajbakhsh N, Jeyaseelan L, Li Q, et al. Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation [J]. Med ImageAnal, 2020, 63: 101693. [10] Balakrishnan G, Zhao A, Sabuncu MR, et al. VoxelMorph: a learning framework for deformable medical image registration[J/OL]. IEEE Trans Med Imaging, 2019. DOI: 10.1109/TMI.2019.2897538. [11] Haskins G, Kruger U, Yan PK. Deep learning in medical image registration: a survey[J]. Mach VisAppl, 2020, 31(1/2): 1-18. [12] Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis[J]. Med ImageAnal, 2017, 42: 60-88. [13] Spampinato C, Palazzo S, Giordano D, et al. Deep learning for automated skeletal bone age assessment in X-ray images[J]. Med ImageAnal, 2017, 36: 41-51. [14] Ren XH, Li TT, Yang XJ, et al. Regression convolutional neural network for automated pediatric bone age assessment from hand radiograph[J]. IEEE J Biomed Health Inform, 2019, 23(5): 2030-8. doi: 10.1109/JBHI.2018.2876916 [15] 王嘉庆, 梅礼晔, 张俊华. 基于深度学习的手骨X射线图像骨龄评估[J]. 计算机工程, 2021, 47(1): 291-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC202101038.htm [16] Lee KC, Lee KH, Kang CH, et al. Clinical validation of a deep learning-based hybrid (greulich-Pyle and modified tannerwhitehouse) method for bone age assessment[J]. Korean J Radiol, 2021, 22(12): 2017-25. doi: 10.3348/kjr.2020.1468 [17] González G, Washko GR, Estépar RSJ. Deep learning for biomarker regression: application to osteoporosis and emphysema on chest CT scans[J]. Proc SPIE Int Soc Opt Eng, 2018, 10574: 105741H. [18] Lee S, Choe EK, Kang HY, et al. The exploration of feature extraction and machine learning for predicting bone density from simple spine X-ray images in a Korean population[J]. Skeletal Radiol, 2020, 49(4): 613-8. doi: 10.1007/s00256-019-03342-6 [19] Pan YL, Shi DJ, Wang HQ, et al. Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening[J]. Eur Radiol, 2020, 30 (7): 4107-16. doi: 10.1007/s00330-020-06679-y [20] Yasaka K, Akai H, Kunimatsu A, et al. Prediction of bone mineral density from computed tomography: application of deep learning with a convolutional neural network[J]. Eur Radiol, 2020, 30(6): 3549-57. doi: 10.1007/s00330-020-06677-0 [21] Fang YJ, Li W, Chen XJ, et al. Opportunistic osteoporosis screening in multi-detector CT images using deep convolutional neural networks[J]. Eur Radiol, 2021, 31(4): 1831-42. doi: 10.1007/s00330-020-07312-8 [22] Pang SM, Su ZH, Leung S, et al. Direct automated quantitative measurement of spine by cascade amplifier regression network with manifold regularization[J]. Med ImageAnal, 2019, 55: 103-15. [23] Zhao S, Wu X, Chen B, et al. Automatic spondylolisthesis grading from MRIs across modalities using faster adversarial recognition network[J]. Med ImageAnal, 2019, 58: 101533. [24] Zhang SC, Sun J, Liu CB, et al. Clinical application of artificial intelligence-assisted diagnosis using anteroposterior pelvic radiographs in children with developmental dysplasia of the hip[J]. Bone Joint J, 2020, 102-B(11): 1574-81. doi: 10.1302/0301-620X.102B11.BJJ-2020-0712.R2 [25] Rajpurkar P, Irvin J, Bagul A, et al. MURA: large dataset for abnormality detection in musculoskeletal radiographs[EB/OL]. 2017: arXiv: 1712.06957[physics. med-ph]. https://arxiv.org/abs/1712.06957 [26] Olczak J, Fahlberg N, Maki A, et al. Artificial intelligence for analyzing orthopedic trauma radiographs[J]. Acta Orthop, 2017, 88 (6): 581-6. doi: 10.1080/17453674.2017.1344459 [27] Chung SW, Han SS, Lee JW, et al. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm[J]. Acta Orthop, 2018, 89(4): 468-73. doi: 10.1080/17453674.2018.1453714 [28] 周清清, 王佳硕, 唐雯, 等. 基于卷积神经网络成人肋骨骨折CT自动检测和分类的应用研究[J]. 影像诊断与介入放射学, 2020, 29(1): 27-31. doi: 10.3969/j.issn.1005-8001.2020.01.005 [29] Tomita N, Cheung YY, Hassanpour S. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans [J]. Comput Biol Med, 2018, 98: 8-15. doi: 10.1016/j.compbiomed.2018.05.011 [30] Yabu A, Hoshino M, Tabuchi H, et al. Using artificial intelligence to diagnose fresh osteoporotic vertebral fractures on magnetic resonance images[J]. Spine J, 2021, 21(10): 1652-8. doi: 10.1016/j.spinee.2021.03.006 [31] Quatman CE, Hettrich CM, Schmitt LC, et al. The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: a systematic review[J]. Am J Sports Med, 2011, 39(7): 1557-68. doi: 10.1177/0363546511407612 [32] Liu F, Zhou ZY, Samsonov A, et al. Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection[J]. Radiology, 2018, 289(1): 160-9. doi: 10.1148/radiol.2018172986 [33] Bien N, Rajpurkar P, Ball RL, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet[J]. PLoS Med, 2018, 15(11): e1002699. doi: 10.1371/journal.pmed.1002699 [34] Jamaludin A, Kadir T, Zisserman A. SpineNet: Automated classification and evidence visualization in spinal MRIs[J]. Med ImageAnal, 2017, 41: 63-73. [35] Won D, Lee HJ, Lee SJ, et al. Spinal Stenosis grading in magnetic resonance imaging using deep convolutional neural networks[J]. Spine, 2020, 45(12): 804-12. doi: 10.1097/BRS.0000000000003377 [36] Lu J T, Pedemonte S, Bizzo B, et al. Deep spine: Automated lumbar vertebral segmentation, disc-level designation, and spinal stenosis grading using deep learning[C]//Machine Learning for Healthcare Conference. PMLR, 2018: 403-19. [37] Hallinan JTPD, Zhu L, Yang KY, et al. Deep learning model for automated detection and classification of central canal, lateral recess, and neural foraminal Stenosis at lumbar spine MRI[J]. Radiology, 2021, 300(1): 130-8. doi: 10.1148/radiol.2021204289 [38] von Schacky CE, Sohn JH, Liu F, et al. Development and validation of a multitask deep learning model for severity grading of hip osteoarthritis features on radiographs[J]. Radiology, 2020, 295(1): 136-45. doi: 10.1148/radiol.2020190925 [39] Omoumi P, Rubini A, Dubuc JE, et al. Diagnostic performance of CTarthrography and 1.5T MR-arthrography for the assessment of glenohumeral joint cartilage: a comparative study with arthroscopic correlation[J]. Eur Radiol, 2015, 25(4): 961-9. doi: 10.1007/s00330-014-3469-2 [40] Georgiev N, Asenov A. Automatic segmentation of lumbar spine mri using ensemble of 2d algorithms[C]//International Workshop and Challenge on Computational Methods and Clinical Applications for Spine Imaging. Springer, Cham, 2018: 154-62. [41] Dolz J, Desrosiers C, Ben Ayed I. IVD-net: intervertebral disc localization and segmentation in MRI with a multi-modal UNet[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2019: 130-143. [42] Pang SM, Pang CL, Zhao L, et al. SpineParseNet: spine parsing for volumetric MR image by a two-stage segmentation framework with semantic image representation[J]. IEEE Trans Med Imaging, 2021, 40(1): 262-73. doi: 10.1109/TMI.2020.3025087 [43] Li TY, Wei BZ, Cong JY, et al. S3egANet: 3D spinal structures segmentation via adversarial nets[J]. IEEE Access, 2019, 8: 1892-901. [44] Liu F, Zhou ZY, Jang H, et al. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging[J]. Magn Reson Med, 2018, 79(4): 2379-91. doi: 10.1002/mrm.26841 [45] Norman B, Pedoia V, Majumdar S. Use of 2D U-net convolutional neural networks for automated cartilage and Meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry[J]. Radiology, 2018, 288(1): 177-85. doi: 10.1148/radiol.2018172322 [46] Flannery SW, Kiapour AM, Edgar DJ, et al. Automated magnetic resonance image segmentation of the anterior cruciate ligament[J]. J Orthop Res, 2021, 39(4): 831-40. doi: 10.1002/jor.24926 [47] Zitová B, Flusser J. Image registration methods: a survey[J]. Image Vis Comput, 2003, 21(11): 977-1000. doi: 10.1016/S0262-8856(03)00137-9 [48] 傅栋, 靳安民, 田京, 等. 颈段脊柱前路手术相关结构的三维可视化[J]. 南方医科大学学报, 2010, 30(4): 888-90, 894. https://www.cnki.com.cn/Article/CJFDTOTAL-DYJD201004063.htm [49] Miao S, Wang ZJ, Liao R. A CNN regression approach for real-time 2D/3D registration[J]. IEEE Trans Med Imaging, 2016, 35(5): 1352-63. doi: 10.1109/TMI.2016.2521800 [50] Rasoulian A, Mousavi P, Hedjazi Moghari M, et al. Group-wise feature-based registration of CT and ultrasound images of spine[C]//Medical Imaging 2010: Visualization, Image-Guided Procedures, and Modeling", "SPIE Proceedings. San Diego, California, USA. SPIE, 2010. [51] Liao R, Miao S, de Tournemire P, et al. An artificial agent for robust image registration[EB/OL]. 2016: arXiv: 1611.10336[cs. CV]. https://arxiv.org/abs/1611.10336 [52] Fu YB, Wang TH, Lei Y, et al. Deformable MR-CBCT prostate registration using biomechanically constrained deep learning networks[J]. Med Phys, 2021, 48(1): 253-63. doi: 10.1002/mp.14584 [53] Yamada K, Nagahama K, Abe Y, et al. Morphological analysis of Kambin's triangle using 3D CT/MRI fusion imaging of lumbar nerve root created automatically with artificial intelligence[J]. Eur Spine J, 2021, 30(8): 2191-9. doi: 10.1007/s00586-021-06916-y
点击查看大图
计量
- 文章访问数: 646
- HTML全文浏览量: 391
- PDF下载量: 105
- 被引次数: 0