留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

轻度认知功能障碍脑结构与功能MRI研究进展

王丰 胡赛琴 李莎 李晓陵 林楠 乔英博 吕静 张仪 曹丹娜

王丰, 胡赛琴, 李莎, 李晓陵, 林楠, 乔英博, 吕静, 张仪, 曹丹娜. 轻度认知功能障碍脑结构与功能MRI研究进展[J]. 分子影像学杂志, 2022, 45(1): 140-145. doi: 10.12122/j.issn.1674-4500.2022.01.28
引用本文: 王丰, 胡赛琴, 李莎, 李晓陵, 林楠, 乔英博, 吕静, 张仪, 曹丹娜. 轻度认知功能障碍脑结构与功能MRI研究进展[J]. 分子影像学杂志, 2022, 45(1): 140-145. doi: 10.12122/j.issn.1674-4500.2022.01.28
WANG Feng, HU Saiqin, LI Sha, LI Xiaoling, LIN Nan, QIAO Yingbo, LÜ Jing, ZHANG Yi, CAO Danna. Advances in structural and functional MRI researches of the brain with mild cognitive impairment[J]. Journal of Molecular Imaging, 2022, 45(1): 140-145. doi: 10.12122/j.issn.1674-4500.2022.01.28
Citation: WANG Feng, HU Saiqin, LI Sha, LI Xiaoling, LIN Nan, QIAO Yingbo, LÜ Jing, ZHANG Yi, CAO Danna. Advances in structural and functional MRI researches of the brain with mild cognitive impairment[J]. Journal of Molecular Imaging, 2022, 45(1): 140-145. doi: 10.12122/j.issn.1674-4500.2022.01.28

轻度认知功能障碍脑结构与功能MRI研究进展

doi: 10.12122/j.issn.1674-4500.2022.01.28
基金项目: 国家自然科学基金(81973930,82074537);黑龙江省自然科学基金(H2016081);黑龙江省自然科学基金联合引导项目(LH2020H103,LH2021H101)
详细信息
    作者简介:

    王丰,博士,主任医师,硕士生导师,E-mail: wfzmy123@163.com

    通讯作者:

    曹丹娜,博士,副主任医师,E-mail: hljanna@126.com

Advances in structural and functional MRI researches of the brain with mild cognitive impairment

Funds: Supported by National Natural Science Foundation of China (81973930, 82074537)
  • 摘要: 轻度认知功能障碍(MCI)患者被认为是阿尔茨海默病的高危人群,并且在MCI阶段进行干预治疗,有利于延缓病情进展甚至逆转认知功能破坏,故对于MCI的研究,具有重要的临床意义。MRI技术包含多个序列成像,可从不同角度发现MCI的大脑结构和功能异常,有利于早期诊断、预测病情进展情况和揭示病理机制,促进MCI和阿尔茨海默病的防治。本文主要对于近些年来结构磁共振成像、功能磁共振成像、扩散张量成像、动脉自旋标记和质子磁共振波谱分析在MCI的诊断、分类、预测病情方面的研究现状进行了论述,希望为今后的临床诊疗及科研提供借鉴。

     

  • [1] Wood H. Meta-analysis finds high reversion rate from MCI to normal cognition[J]. Nat Rev Neurol, 2016, 12(4): 189. doi: 10.1038/nrneurol.2016.29
    [2] Bertens D, Vos S, Kehoe P, et al. Use of mild cognitive impairment and prodromalAD/MCI due toAD in clinical care: a European survey [J]. Alzheimers Res Ther, 2019, 11(1): 74. doi: 10.1186/s13195-019-0525-9
    [3] Heiss WD, Rosenberg GA, Thiel A, et al. Neuroimaging in vascular cognitive impairment: a state-of-the-art review[J]. BMC Med, 2016, 14: 174. doi: 10.1186/s12916-016-0725-0
    [4] Braak H, del Tredici K. The preclinical phase of the pathological process underlying sporadic Alzheimer's disease[J]. Brain, 2015, 138 (Pt 10): 2814-33.
    [5] Das SR, Pluta J, Mancuso L, et al. Anterior and posterior MTL networks in aging and MCI[J]. Neurobiol Aging, 2015, 36(Suppl 1): S141-50, S150. e1.
    [6] Kärkkäinen M, Prakash M, Zare M, et al. Structural brain imaging phenotypes of mild cognitive impairment (MCI) and Alzheimer's disease (AD) found by hierarchical clustering[J]. Int J Alzheimers Dis, 2020, 2020: 2142854.
    [7] Gomar JJ, Ragland JD, Ulu\u011f AM, et al. Differential medial temporal lobe morphometric predictors of item- and relationalencoded memories in healthy individuals and in individuals with mild cognitive impairment and Alzheimer's disease[J]. Alzheimers Dement (N Y), 2017, 3(2): 238-46. doi: 10.1016/j.trci.2017.03.002
    [8] Li X, Xia JN, Ma C, et al. Accelerating structural degeneration in temporal regions and their effects on cognition in aging of MCI patients[J]. Cereb Cortex, 2020, 30(1): 326-38. doi: 10.1093/cercor/bhz090
    [9] Frisoni GB, Boccardi M, Barkhof F, et al. Strategic roadmap for an early diagnosis of Alzheimer's disease based on biomarkers[J]. Lancet Neurol, 2017, 16(8): 661-76. doi: 10.1016/S1474-4422(17)30159-X
    [10] Payton NM, Kalpouzos G, Rizzuto D, et al. Combining cognitive, genetic, and structural neuroimaging markers to identify individuals with increased dementia risk[J]. J Alzheimers Dis, 2018, 64(2): 533-42. doi: 10.3233/JAD-180199
    [11] Ten Kate M, Barkhof F, Boccardi M, et al. Clinical validity of medial temporal atrophy as a biomarker for Alzheimer's disease in the context of a structured 5-phase development framework[J]. NeurobiolAging, 2017, 52: 167-82. e1.
    [12] Khatri U, Kwon GR. An efficient combination among sMRI, CSF, cognitive score, and APOE ε 4 biomarkers for classification of AD and MCI using extreme learning machine[J]. Comput Intell Neurosci, 2020, 2020: 8015156.
    [13] Ren P, Lo RY, Chapman BP, et al. Longitudinal alteration of intrinsic brain activity in the striatum in mild cognitive impairment[J]. J Alzheimers Dis, 2016, 54(1): 69-78. doi: 10.3233/JAD-160368
    [14] Long ZQ, Jing B, Yan HG, et al. A support vector machine-based method to identify mild cognitive impairment with multi-level characteristics of magnetic resonance imaging[J]. Neuroscience, 2016, 331: 169-76. doi: 10.1016/j.neuroscience.2016.06.025
    [15] Liu L, Jiang H, Wang D, et al. A study of regional homogeneity of resting-state Functional Magnetic Resonance Imaging in mild cognitive impairment[J]. Behav Brain Res, 2021, 402: 113103. doi: 10.1016/j.bbr.2020.113103
    [16] Esposito R, Cieri F, Chiacchiaretta P, et al. Modifications in resting state functional anticorrelation between default mode network and dorsal attention network: comparison among young adults, healthy Elders and mild cognitive impairment patients[J]. Brain Imaging Behav, 2018, 12(1): 127-41. doi: 10.1007/s11682-017-9686-y
    [17] Lee ES, Yoo K, Lee YB, et al. Default mode network functional connectivity in early and late mild cognitive impairment: results from the Alzheimer's disease neuroimaging initiative[J]. Alzheimer Dis Assoc Disord, 2016, 30(4): 289-96. doi: 10.1097/WAD.0000000000000143
    [18] Li MY, Zheng GH, Zheng YH, et al. Alterations in resting-state functional connectivity of the default mode network in amnestic mild cognitive impairment: an fMRI study[J]. BMC Med Imaging, 2017, 17(1): 48. doi: 10.1186/s12880-017-0221-9
    [19] Cai SP, Chong T, Peng YL, et al. Altered functional brain networks in amnestic mild cognitive impairment: a resting-state fMRI study[J]. Brain Imaging Behav, 2017, 11(3): 619-31. doi: 10.1007/s11682-016-9539-0
    [20] Xue JY, Guo H, Gao Y, et al. Altered directed functional connectivity of the Hippocampus in mild cognitive impairment and Alzheimer's disease: a resting-state fMRI study[J]. Front Aging Neurosci, 2019, 11: 326. doi: 10.3389/fnagi.2019.00326
    [21] Li H, Jia XQ, Qi ZG, et al. Disrupted functional connectivity of Cornu ammonis subregions in amnestic mild cognitive impairment: a longitudinal resting-state fMRI study[J]. Front Hum Neurosci, 2018, 12: 413.
    [22] Armstrong CC, Moody TD, Feusner JD, et al. Graph-theoretical analysis of resting-state fMRI in pediatric obsessive-compulsive disorder[J]. JAffect Disord, 2016, 193: 175-84. doi: 10.1016/j.jad.2015.12.071
    [23] Xu XW, Li WK, Mei J, et al. Feature selection and combination of information in the functional brain connectome for discrimination of mild cognitive impairment and analyses of altered brain patterns[J]. FrontAging Neurosci, 2020, 12: 28.
    [24] Hojjati SH, Ebrahimzadeh A, Khazaee A, et al. Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM[J]. J Neurosci Methods, 2017, 282: 69-80. doi: 10.1016/j.jneumeth.2017.03.006
    [25] Papma JM, Smits M, de Groot M, et al. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment[J]. Eur Radiol, 2017, 27(9): 3716-24. doi: 10.1007/s00330-017-4768-1
    [26] Lou WT, Shi L, Wang DF, et al. Decreased activity with increased background network efficiency in amnestic MCI during a visuospatial working memory task[J]. Hum Brain Mapp, 2015, 36 (9): 3387-403. doi: 10.1002/hbm.22851
    [27] Sparacia G, Agnello F, la Tona G, et al. Assessment of cerebral microbleeds by susceptibility-weighted imaging in Alzheimer's disease patients: a neuroimaging biomarker of the disease[J]. Neuroradiol J, 2017, 30(4): 330-5. doi: 10.1177/1971400916689483
    [28] Duan WN, Zhou GD, Balachandrasekaran A, et al. Cerebral blood flow predicts conversion of mild cognitive impairment into Alzheimer's disease and cognitive decline: an arterial spin labeling follow-up study[J]. JAlzheimers Dis, 2021, 82(1): 293-305. doi: 10.3233/JAD-210199
    [29] Popa-Wagner A, Buga AM, Popescu B, et al. Vascular cognitive impairment, dementia, aging and energy demand. A vicious cycle[J]. J Neural Transm (Vienna), 2015, 122(Suppl 1): S47-S54.
    [30] Ambrose CT. The role of capillaries in the lesser ailments of old age and in Alzheimer's disease and vascular dementia: the potential of pro-therapeutic angiogenesis[J]. J Alzheimer's Dis, 2016, 54(1): 31-43. doi: 10.3233/JAD-160303
    [31] Zlatar ZZ, Bischoff-Grethe A, Hays CC, et al. Higher brain perfusion may not support memory functions in cognitively normal carriers of the ApoE ε4 allele compared to non-carriers[J]. Front Aging Neurosci, 2016, 8: 151.
    [32] Duan WN, Sehrawat P, Balachandrasekaran A, et al. Cerebral blood flow is associated with diagnostic class and cognitive decline in Alzheimer's disease[J]. JAlzheimers Dis, 2020, 76(3): 1103-20. doi: 10.3233/JAD-200034
    [33] de Vis JB, Peng SL, Chen X, et al. Arterial-spin-labeling (ASL) perfusion MRI predicts cognitive function in elderly individuals: a 4-year longitudinal study[J]. J Magn Reson Imaging, 2018, 48(2): 449-58. doi: 10.1002/jmri.25938
    [34] van der Thiel M, Rodriguez C, van de Ville D, et al. Regional cerebral perfusion and cerebrovascular reactivity in elderly controls with subtle cognitive deficits[J]. FrontAging Neurosci, 2019, 11: 19.
    [35] Power MC, Su D, Wu AZ, et al. Association of white matter microstructural integrity with cognition and dementia[J]. Neurobiol Aging, 2019, 83: 63-72. doi: 10.1016/j.neurobiolaging.2019.08.021
    [36] Croall ID, Lohner V, Moynihan B, et al. Using DTI to assess white matter microstructure in cerebral small vessel disease (SVD) in multicentre studies[J]. Clin Sci (Lond), 2017, 131(12): 1361-73. doi: 10.1042/CS20170146
    [37] Ding K, Tarumi T, Zhu DC, et al. Cardiorespiratory fitness and white matter neuronal fiber integrity in mild cognitive impairment[J]. J Alzheimers Dis, 2018, 61(2): 729-39.
    [38] Wen QT, Mustafi SM, Li JJ, et al. White matter alterations in earlystage Alzheimer's disease: a tract-specific study[J]. Alzheimers Dement (Amst), 2019, 11: 576-87. doi: 10.1016/j.dadm.2019.06.003
    [39] Kumar A, Singh S, Singh A, et al. Diffusion tensor imaging based white matter changes and antioxidant enzymes status for early identification of mild cognitive impairment[J]. Int J Neurosci, 2019, 129(3): 209-16. doi: 10.1080/00207454.2018.1521401
    [40] Raghavan S, Przybelski SA, Reid RI, et al. Reduced fractional anisotropy of the genu of the corpus callosum as a cerebrovascular disease marker and predictor of longitudinal cognition in MCI[J]. NeurobiolAging, 2020, 96: 176-83.
    [41] Shim G, Choi KY, Kim D, et al. Predicting neurocognitive function with hippocampal volumes and DTI metrics in patients with Alzheimer's dementia and mild cognitive impairment[J]. Brain Behav, 2017, 7(9): e00766. doi: 10.1002/brb3.766
    [42] Sexton CE, Kalu UG, Filippini N, et al. A meta-analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease [J]. NeurobiolAging, 2011, 32(12): 2322. e5-18.
    [43] Teipel SJ, Kuper-Smith JO, Bartels C, et al. Multicenter tract-based analysis of microstructural lesions within the Alzheimer's disease spectrum: association with amyloid pathology and diagnostic usefulness[J]. JAlzheimers Dis, 2019, 72(2): 455-65. doi: 10.3233/JAD-190446
    [44] Dyrba M, Barkhof F, Fellgiebel A, et al. Predicting prodromal Alzheimer's disease in subjects with mild cognitive impairment using machine learning classification of multimodal multicenter diffusion-tensor and magnetic resonance imaging data[J]. J Neuroimaging, 2015, 25(5): 738-47. doi: 10.1111/jon.12214
    [45] Wang H, Tan L, Wang HF, et al. Magnetic resonance spectroscopy in Alzheimer's disease: systematic review and meta-analysis[J]. J Alzheimers Dis, 2015, 46(4): 1049-70. doi: 10.3233/JAD-143225
    [46] Tumati S, Martens S, Aleman A. Magnetic resonance spectroscopy in mild cognitive impairment: systematic review and meta-analysis[J]. Neurosci Biobehav Rev, 2013, 37(10 Pt 2): 2571-86.
    [47] Wong D, Atiya S, Fogarty J, et al. Reduced hippocampal glutamate and posterior cingulate N-acetyl aspartate in mild cognitive impairment and Alzheimer's disease is associated with episodic memory performance and white matter integrity in the cingulum: a pilot study[J]. JAlzheimers Dis, 2020, 73(4): 1385-405. doi: 10.3233/JAD-190773
    [48] Waragai M, Moriya M, Nojo T. Decreased N-acetyl aspartate/myoinositol ratio in the posterior cingulate cortex shown by magnetic resonance spectroscopy may be one of the risk markers of preclinical Alzheimer's disease: a 7-year follow-up study[J]. J Alzheimers Dis, 2017, 60(4): 1411-27. doi: 10.3233/JAD-170450
    [49] Mitolo M, Stanzani-Maserati M, Capellari S, et al. Predicting conversion from mild cognitive impairment to Alzheimer's disease using brain 1 H-MRS and volumetric changes: a two- year retrospective follow-up study[J]. Neuroimage Clin, 2019, 23: 101843. doi: 10.1016/j.nicl.2019.101843
    [50] Zhao LH, Teng JL, Mai W, et al. A pilot study on the cutoff value of related brain metabolite in Chinese elderly patients with mild cognitive impairment using MRS[J]. Front Aging Neurosci, 2021, 13: 617611. doi: 10.3389/fnagi.2021.617611
  • 加载中
计量
  • 文章访问数:  239
  • HTML全文浏览量:  92
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-28
  • 网络出版日期:  2022-03-29
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日