Advances in Multimodality Intravascular Imaging for Identification of High-risk Vulnerable Plaques in Coronary Arteries
-
摘要: 冠状动脉粥样硬化斑块破裂或侵蚀引起的血栓形成造成心肌梗死事件的发生。了解斑块是如何从稳定型转变为危及生命的高危易损斑块的过程并寻求有效的早期干预是临床亟需解决的问题。目前,临床中使用的腔内影像学技术可以识别斑块的形态特征,但不能可靠预测哪些稳定型斑块会转变为高危易损斑块发生破裂继发心肌梗死。本文从高危斑块单模态成像进展、血管内分子成像到多模态血管内成像技术的进展作相关整理,并总结近年来多项评估高危易损斑块的研究,对冠脉内高危易损斑块识别的多模态成像在临床转化的可能性和潜力进行综述。Abstract: Coronary thrombosis caused by rupture or erosion of coronary atherosclerotic plaques results in myocardial infarction events. Understanding how plaques change from stable to life-threatening, high-risk vulnerable plaques and seeking effective intervention is a pressing need. Currently, intra-cavitary imaging technology used in clinical practice allows visualization of detailed morphological features of plaques, however, it is not reliable to predict which type of stable plaques will transform into high-risk vulnerable plaques or rupture secondary to myocardial infarction. This article collates advances in single-modality imaging of high-risk plaques, intravascular molecular imaging to the progress of multimodality intravascular imaging, and summarizes studies in recent years to assess high-risk and vulnerable plaques. The possibility and potential of multimodal imaging for plaque identification in clinical transformation are reviewed.
-
表 1 易损斑块特征
Table 1. The characteristics of vulnerable plaque
特征 薄纤维帽斑块 影像学手段 形态学特征 钙化 微钙化和钙化结节 CT,OCT IVUS 成骨细胞钙化 18F-氟化钠摄取 钙含量 CT, MRI 管腔细胞 平滑肌细胞迁移 18F-氟乙酰胺摄取 斑块特征 总斑块负荷 CT,MRI 正性重构 IVUS,OCT,光谱学,CT 坏死核心 IVUS,OCT,CT 生物学特征 炎症 巨噬细胞聚集 OCT,光谱学,18F-氟脱氧葡萄糖,18F-氟乙酰胺摄取 血管生成 内皮细胞 18F-氟乙酰胺摄取 VCAM1 放射性标记抗体 新生血管 IVUS,OCT 血流动力学特征 低内皮剪切力 FD-OCT OCT: 血管内光学相干断层扫描; IVUS: 血管内超声. 表 2 血管内单模态成像技术特点
Table 2. Characteristics of intravascular single-modality intravascular imaging
声光设备 特点 生物标记成像 IVUS OCT NIRS NIRF FLIM IVPA √ 高分辨率(~10 μm) √ 穿透深度(≥5 mm) 2D脂质成像 √ √ √ 3D脂质成像 √ 炎症 √ 胶原弹力层 √ NIRS: 近红外光谱; NIRF: 近红外荧光分子成像; FLIM: 荧光寿命成像; IVPA: 血管内光声成像. -
[1] Otto CM, Nishimura RA, Bonow RO, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines[J]. Circulation, 2021, 143(5): e25-e197. http://d.wanfangdata.com.cn/periodical/83433ddc5116f0896f638f42249ffb99 [2] Virani SS, Alonso A, Benjamin EJ, et al. Heart disease and stroke statistics-2020 update: a report from the american heart association [J]. Circulation, 2020, 141(2): e139-e596. http://f.i-md.com/medinfo/material/7e5/4ea7c65944ae30018c1c67e5/4ea7c66144ae30018c1c6802.pdf [3] Daghash H, Lim Abdullah K, Ismail MD. The effect of acute coronary syndrome care pathways on in-hospital patients: a systematic review [J]. J Eval Clin Pract, 2020, 26(4): 1280-91. doi: 10.1111/jep.13280 [4] Kitahara S, Kataoka Y, Sugane H, et al. In vivo imaging of vulnerable plaque with intravascular modalities: its advantages and limitations [J]. Cardiovasc Diagn Ther, 2020, 10(5): 1461-79. doi: 10.21037/cdt-20-238 [5] Yonetsu T, Jang IK. Advances in Intravascular Imaging: New Insights into the Vulnerable Plaque from Imaging Studies[J]. Korean Circ J, 2018, 48(1): 1-15. doi: 10.4070/kcj.2017.0182 [6] Villines TC, Robinson AA. Will plaque quantification on coronary CTA end our infatuation with lumen stenosis?[J]. JACC: Cardiovasc Imaging, 2020, 13(8): 1718-20. doi: 10.1016/j.jcmg.2020.06.007 [7] Andreini D, Magnoni M, Conte E, et al. Coronary plaque features on CTA can identify patients at increased risk of cardiovascular events [J]. JACC: Cardiovasc Imaging, 2020, 13(8): 1704-17. doi: 10.1016/j.jcmg.2019.06.019 [8] Ravikanth R. Role of 18F-FDG positron emission tomography in carotid atherosclerotic plaque imaging: a systematic review[J]. World J Nucl Med, 2020, 19(4): 327-35. doi: 10.4103/wjnm.WJNM_26_20 [9] Bueno A, March JR, Garcia P, et al. Carotid plaque inflammation assessed by 18F-FDG PET/CT and lp-PLA2 is higher in symptomatic patients[J]. Angiology, 2021, 72(3): 260-7. doi: 10.1177/0003319720965419 [10] Wei DT, Harrison W, Looi JL. Ischaemia-induced Syncope: the role of cardiac magnetic resonance imaging[J]. N Z Med J, 2021, 134 (1530): 116-7. http://www.researchgate.net/publication/349735517_Ischaemia-induced_syncope_the_role_of_cardiac_magnetic_resonance_imaging [11] Truong M, Lennartsson F, Bibic A, et al. Classifications of atherosclerotic plaque components with T1 and T2* mapping in 11.7 T MRI[J]. Eur J Radiol Open, 2021, 8: 100323. doi: 10.1016/j.ejro.2021.100323 [12] Haberkorn SM, Haberkorn SI, Bönner F, et al. Vasodilator myocardial perfusion cardiac magnetic resonance imaging is superior to dobutamine stress echocardiography in the detection of relevant coronary artery Stenosis: a systematic review and metaanalysis on their diagnostic accuracy[J]. Front Cardiovasc Med, 2021, 8: 630846. doi: 10.3389/fcvm.2021.630846 [13] Yoshida K. Plaque imaging using black-blood MRI[J]. Shinkei Geka Neurol Surg, 2021, 49(2): 432-7. http://www.researchgate.net/publication/350409492_Plaque_Imaging_Using_Black-blood_MRI [14] Yang H, Ji C, Wang H, et al. Characterisation of symptomatic intracranial plaque without substantial Stenosis using highresolution vessel wall MRI[J]. Clin Radiol, 2021, 76(5): 392. http://www.sciencedirect.com/science/article/pii/S0009926021000659 [15] Erlinge D, Maehara A, Ben-Yehuda O, et al. Identification of vulnerable plaques and patients by intracoronary near-infrared spectroscopy and ultrasound (PROSPECT Ⅱ): a prospective natural history study[J]. Lancet, 2021, 397(10278): 985-95. doi: 10.1016/S0140-6736(21)00249-X [16] Brugaletta S, Sabaté M. Assessment of plaque composition by intravascular ultrasound and near-infrared spectroscopy[J]. Circ J, 2014, 78(7): 1531-9. doi: 10.1253/circj.CJ-14-0496 [17] Farhan S, Redfors B, Maehara A, et al. Relationship between insulin resistance, coronary plaque, and clinical outcomes in patients with acute coronary syndromes: an analysis from the PROSPECT study [J]. Cardiovasc Diabetol, 2021, 20(1): 1-10. doi: 10.1186/s12933-020-01183-5 [18] Bajaj R, Garcia-Garcia HM, Courtney BK, et al. Multi-modality intravascular imaging for guiding coronary intervention and assessing coronary atheroma: the Novasight Hybrid IVUS-OCT system[J]. Minerva Cardiol Angiol, 2021. DOI: 10.23736/s2724-5683.21.05532-0. [19] Office FP. Erratum: advances in IVUS/OCT and future clinical perspective of novel hybrid catheter system in coronary imaging[J]. Front Cardiovasc Med, 2020, 7: 119. doi: 10.3389/fcvm.2020.00119 [20] Sharma SK, Vengrenyuk Y, Kini AS. IVUS, OCT, and coronary artery calcification: is there a bone of contention?[J]. JACC: Cardiovasc Imaging, 2017, 10(8): 880-2. doi: 10.1016/j.jcmg.2017.06.008 [21] Johnsrud K, Seierstad T, Russell D, et al. Inter-reader agreement of 18F-FDG PET/CT for the quantification of carotid artery plaque inflammation[J]. JRSM Cardiovasc Dis, 2020, 9: 204800402098094. doi: 10.1177/2048004020980941 [22] Koiwaya H, Tahara N, Tahara A, et al. In vivo molecular imaging of ruptured coronary atherosclerotic plaque using IVUS, OCT, and FDG-PET/CT[J]. JACC: Cardiovasc Interv, 2016, 9(12): e113-5. doi: 10.1016/j.jcin.2016.03.013 [23] Roleder T, Dobrolinska M, Pociask E, et al. Coronary plaque redistribution after stent implantation is determined by lipid composition: a NIRS-IVUS analysis[J]. Cardiol J, 2020, 27(3): 238-45. doi: 10.5603/CJ.a2018.0111 [24] Zanchin C, Ueki Y, Losdat S, et al. In vivo relationship between nearinfrared spectroscopy-detected lipid-rich plaques and morphological plaque characteristics by optical coherence tomography and intravascular ultrasound: a multimodality intravascular imaging study [J]. Eur Heart J Cardiovasc Imaging, 2021, 22(7): 824-34. doi: 10.1093/ehjci/jez318 [25] Hanson ID, Goldstein JA, Dixon SR, et al. Comparison of coronary artery lesion length by NIRS-IVUS versus angiography alone[J]. CoronArtery Dis, 2015, 26(6): 484-9. doi: 10.1097/MCA.0000000000000263 [26] Hartman EMJ, Hoogendoorn A, Akyildiz AC, et al. Colocalization of intracoronary lipid-rich plaques and calcifications: an integrated NIRS-IVUS analysis[J]. JACC: Cardiovasc Imaging, 2020, 13(7): 1627-8. doi: 10.1016/j.jcmg.2020.01.027 [27] Waksman R, Torguson R. NIRS-IVUS: One Imaging System May FitAll[J]. JACC Cardiovasc Imaging, 2021, 14(7): 1451-3. doi: 10.1016/j.jcmg.2020.09.007 [28] Sawada T, Shite J, Garcia-Garcia HM, et al. Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma [J]. Eur Heart J, 2008, 29(9): 1136-46. doi: 10.1093/eurheartj/ehn132 [29] Diletti R, Garcia-Garcia HM, Gomez-Lara J, et al. Assessment of coronary atherosclerosis progression and regression at bifurcations using combined IVUS and OCT[J]. JACC: Cardiovasc Imaging, 2011, 4(7): 774-80. doi: 10.1016/j.jcmg.2011.04.007 [30] Gonzalo N, Garcia-Garcia HM, Regar E, et al. In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography[J]. JACC: Cardiovasc Imaging, 2009, 2(4): 473-82. doi: 10.1016/j.jcmg.2008.11.016 [31] Kubo T, Maehara A, Mintz GS, et al. The dynamic nature of coronary artery lesion morphology assessed by serial virtual histology intravascular ultrasound tissue characterization[J]. J Am Coll Cardiol, 2010, 55(15): 1590-7. doi: 10.1016/j.jacc.2009.07.078 [32] Mieghem CAGV, Bruining N, Schaar JA, et al. Rationale and methods of the integrated biomarker and imaging study (IBIS): combining invasive and non-invasive imaging with biomarkers to detect subclinical atherosclerosis and assess coronary lesion biology [J]. Int J Cardiovasc Imaging, 2005, 21(4): 425-41. doi: 10.1007/s10554-004-7986-y [33] Taniwaki M, Radu MD, Garcia-Garcia HM, et al. Long-term safety and feasibility of three-vessel multimodality intravascular imaging in patients with ST-elevation myocardial infarction: the IBIS-4 (integrated biomarker and imaging study) substudy[J]. Int J Cardiovasc Imaging, 2015, 31(5): 915-26. doi: 10.1007/s10554-015-0631-0 [34] Ughi GJ, Verjans J, Fard AM, et al. Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging[J]. Int J Cardiovasc Imaging, 2015, 31(2): 259-68. doi: 10.1007/s10554-014-0556-z [35] Wu ML, Li X, Guo Q, et al. Magnetic mesoporous silica nanoparticles-aided dual MR/NIRF imaging to identify macrophage enrichment in atherosclerotic plaques[J]. Nanomed: Nanotechnol Biol Med, 2021, 32: 102330. doi: 10.1016/j.nano.2020.102330 [36] Gaffron F, Tilch A, Grüttner C, et al. Challenges in Tracking of Fluorochrome-Labelled Nanoparticles in Mice via Whole Body NIRF Imaging[J]. Nanomaterials (Basel), 2020, 10(3): 596. doi: 10.3390/nano10030596 [37] Gamache RF, Zettlitz KA, Tsai WTK, et al. Tri-functional platform for construction of modular antibody fragments for in vivo 18F-PET or NIRF molecular imaging[J]. Chem Sci, 2020, 11(7): 1832-8. doi: 10.1039/C9SC05007H [38] Dai XJ, Yang H, Shan TQ, et al. Miniature endoscope for multimodal imaging[J]. ACS Photonics, 2017, 4(1): 174-80. doi: 10.1021/acsphotonics.6b00852 [39] Iskander-Rizk S, Wu M, Springeling G, et al. In vivo intravascular photoacoustic imaging of plaque lipid in coronary atherosclerosis[J]. EuroIntervention, 2019, 15(5): 452-6. doi: 10.4244/EIJ-D-19-00318
点击查看大图
表(2)
计量
- 文章访问数: 398
- HTML全文浏览量: 204
- PDF下载量: 48
- 被引次数: 0