留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

磁共振NODDI技术在帕金森认知障碍患者海马微观结构的应用

肖宁 热米拉·玉山 陆鹏 姜磊 王红

肖宁, 热米拉·玉山, 陆鹏, 姜磊, 王红. 磁共振NODDI技术在帕金森认知障碍患者海马微观结构的应用[J]. 分子影像学杂志, 2022, 45(1): 35-39. doi: 10.12122/j.issn.1674-4500.2022.01.07
引用本文: 肖宁, 热米拉·玉山, 陆鹏, 姜磊, 王红. 磁共振NODDI技术在帕金森认知障碍患者海马微观结构的应用[J]. 分子影像学杂志, 2022, 45(1): 35-39. doi: 10.12122/j.issn.1674-4500.2022.01.07
XIAO Ning, Remila·Yushan, LU Peng, JIANG Lei, WANG Hong. Application of magnetic resonance NODDI technique on hippocampal microstructure in patients with Parkinson's cognitive impairment[J]. Journal of Molecular Imaging, 2022, 45(1): 35-39. doi: 10.12122/j.issn.1674-4500.2022.01.07
Citation: XIAO Ning, Remila·Yushan, LU Peng, JIANG Lei, WANG Hong. Application of magnetic resonance NODDI technique on hippocampal microstructure in patients with Parkinson's cognitive impairment[J]. Journal of Molecular Imaging, 2022, 45(1): 35-39. doi: 10.12122/j.issn.1674-4500.2022.01.07

磁共振NODDI技术在帕金森认知障碍患者海马微观结构的应用

doi: 10.12122/j.issn.1674-4500.2022.01.07
基金项目: 

新疆维吾尔自治区自然科学基金 2020D01C191

详细信息
    作者简介:

    肖宁,在读硕士研究生,E-mail: 535107992@qq.com

    通讯作者:

    王红,主任医师,E-mail: wangh_xj@163.com

Application of magnetic resonance NODDI technique on hippocampal microstructure in patients with Parkinson's cognitive impairment

  • 摘要:   目的  利用神经突方向离散度与密度成像(NODDI)探索帕金森认知障碍(PD-CI)患者海马微观结构的变化,并探讨其与认知功能的关系。  方法  选择我院36例帕金森病患者为帕金森病组,选取20例健康志愿者为对照组,对两组进行磁共振检查,检查前对PD患者进行蒙特利尔认知评分(MoCA),其中16例MoCA评分 < 26分为PD-CI组,20例MoCA评分≥26分为帕金森认知正常组。根据NODDI扫描结果获取相关参数:方向离散度指数(ODI)、细胞内体积分数(Vic)和各向同性水分子体积分数(Viso)值,分析感兴趣区ODI、Vic及Viso值的组间差异。将差异有统计学意义的指标分别与MoCA量表评分进行Pearson相关分析,研究各扩散指数与MoCA量表得分的相关性。  结果  PD患者海马的ODI值和Vic值均低于健康对照组(P < 0.05),且PD-CI组的ODI值和Vic值低于帕金森认知正常组,差异有统计学意义(P < 0.05),而Viso值与健康对照组相比差异无统计学意义。采用Pearson相关分析对海马ODI值和Vic值与MoCA量表评分进行相关性分析,得出左侧海马ODI值与MoCA量表评分相关性最强(r=0.617,P < 0.05)。  结论  NODDI技术能够反映PD患者海马微观结构的改变,并在一定程度上体现了患者的临床认知状态,从而在其辅助诊断中提供重要的参考价值。

     

  • 图  1  左侧海马ODI值(A)、Vic值(B)和右侧海马ODI值(C)与MoCA评分的相关性散点图

    Figure  1.  Scatter plot of correlation between MoCA score and ODI value (A), Vic value (B) of left hippocampus and ODI value (C) of right hippocampus.

    图  2  女,63岁,PD患者,左上肢不自主抖动8年

    A~C: 常规序列海马层面T1WI图、T2WI图、T2-FLAIR图; D: 海马层面ODI图, 与对照组相比, 测得患者双侧海马的ODI值显著降低; E: 海马层面Vic图, 与对照组相比, 测得患者双侧海马的Vic值显著降低; F: 海马层面Viso图, 与对照组相比, 测得患者双侧海马的Viso值差异无统计学意义.

    Figure  2.  A 63-year-old female PD patient, the left upper limb has been shaking involuntarily for 8 years.

    表  1  3组受试者一般情况及MoCA量表评分分析

    Table  1.   General situation of three groups of subjects and score analysis of MoCA scale

    因素 PD-CI (n=16) PD-CN (n=20) NC (n=20) P
    性别(男/女) 10/6 10/10 12/8 0.715
    年龄(岁) 61.88±6.27 61.45±7.63 60.95±6.35 0.921
    MoCA评分 20.81±1.60ab 27.20±1.06 28.45±1.15 < 0.001
    aP < 0.05 vs PD-CN组; bP < 0.05 vs NC组; PD-CI: 帕金森认知障碍组; PD-CN:帕金森认知正常组; NC: 对照组.
    下载: 导出CSV

    表  2  PD组与对照组海马各参数指标的均值

    Table  2.   Mean values of parameters of hippocampus between PD group and control group (Mean±SD)

    参数 PD-CI PD-CN NC
    ODI
      左侧 0.456±0.025 0.473±0.019 0.489±0.015
      右侧 0.459±0.028 0.479±0.020 0.496±0.015
    Vic
      左侧 0.441±0.023 0.460±0.019 0.481±0.023
      右侧 0.446±0.015 0.462±0.019 0.479±0.023
    Viso
      左侧 0.109±0.031 0.097±0.027 0.086±0.028
      右侧 0.106±0.016 0.098±0.021 0.092±0.014
    ODI: 方向离散度指数; Vic: 细胞内体积分数; Viso: 各向同性水分子体积分数.
    下载: 导出CSV

    表  3  双侧海马各参数指标的组间比较

    Table  3.   Comparison of parameters of bilateral hippocampus between groups

    参数 组别 组别 P(左侧) P(右侧)
    ODI PD-CI PD-CN 0.043 0.022
    NC < 0.001 < 0.001
    PD-CN PD-CI 0.043 0.022
    NC 0.043 0.028
    Vic PD-CI PD-CN 0.032 0.044
    NC < 0.001 < 0.001
    PD-CN PD-CI 0.032 0.044
    NC 0.010 0.033
    Viso PD-CI PD-CN 0.644 0.554
    NC 0.056 0.060
    PD-CN PD-CI 0.644 0.554
    NC 0.662 0.805
    下载: 导出CSV

    表  4  PD-CI组ODI值和Vic值与MoCA量表评分的相关性分析

    Table  4.   Correlation analysis of ODI value, Vic value and MoCA scale score in PD-CI group

    指标 ODI(左) Vic(左) ODI(右) Vic(右)
    r 0.617 0.563 0.502 0.312
    P 0.011 0.023 0.048 0.240
    下载: 导出CSV
  • [1] Khoo TK, Yarnall AJ, Duncan GW, et al. The spectrum of nonmotor symptoms in early Parkinson disease[J]. Neurology, 2013, 80(3): 276-81. doi: 10.1212/WNL.0b013e31827deb74
    [2] Aarsland D, Creese B, Politis M, et al. Cognitive decline in Parkinson disease[J]. Nat Rev Neurol, 2017, 13(4): 217-31.
    [3] Saghafi S, Ferguson L, Hogue O, et al. Histopathologic subtype of hippocampal sclerosis and episodic memory performance before and after temporal lobectomy for epilepsy[J]. Epilepsia, 2018, 59 (4): 825-33. doi: 10.1111/epi.14036
    [4] Tezer FI, Xasiyev F, Soylemezoglu F, et al. Clinical and electrophysiological findings in mesial temporal lobe epilepsy with hippocampal sclerosis, based on the recent histopathological classifications[J]. Epilepsy Res, 2016, 127: 50-4. doi: 10.1016/j.eplepsyres.2016.08.012
    [5] Diederich K, Bastl A, Wersching H, et al. Effects of different exercise strategies and intensities on memory performance and neurogenesis [J]. Front Behav Neurosci, 2017, 11: 47.
    [6] Győrfi O, Nagy H, Bokor M, et al. Insights into the structure and function of the hippocampal formation: relevance to Parkinson's disease[J]. Ideggyogy Sz, 2018: 15-24. doi: 10.18071/isz.71.0015
    [7] Schneider CB, Donix M, Linse K, et al. Accelerated age-dependent hippocampal volume loss in parkinson disease with mild cognitive impairment[J]. Am J Alzheimers Dis Other Demen, 2017, 32(6): 313-9. doi: 10.1177/1533317517698794
    [8] Zhang H, Schneider T, Wheeler- Kingshott CA, et al. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain[J]. NeuroImage, 2012, 61(4): 1000-16. doi: 10.1016/j.neuroimage.2012.03.072
    [9] Radhakrishnan H, Stark SM, Stark CEL. Microstructural alterations in hippocampal subfields mediate age-related memory decline in humans[J]. Front Aging Neurosci, 2020, 12(1): 94.
    [10] 刘伟星, 陆鹏, 张晓斌, 等. 磁共振神经突方向离散度与密度成像对帕金森病患者壳核病变的临床应用[J]. 磁共振成像, 2020, 11(8): 610-4. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC202008005.htm
    [11] Merluzzi AP, Dean DC Ⅲ, Adluru N Ⅲ, et al. Age-dependent differences in brain tissue microstructure assessed with neurite orientation dispersion and density imaging[J]. Neurobiol Aging, 2016, 43: 79-88. doi: 10.1016/j.neurobiolaging.2016.03.026
    [12] Becker S, Granert O, Timmers M, et al. Association of hippocampal subfields, CSF biomarkers, and cognition in patients with parkinson disease without dementia[J]. Neurology, 2021, 96(6): e904-15.
    [13] Chen YS, Chen HL, Lu CH, et al. The corticolimbic structural covariance network as an early predictive biosignature for cognitive impairment in Parkinson's disease[J]. Sci Rep, 2021, 11(1): 1-9. doi: 10.1038/s41598-020-79139-8
    [14] 陈旭辉, 林志坚, 吴军, 等. 弥散张量成像测量海马体各向异性分数在帕金森病认知障碍中的应用[J]. 中风与神经疾病杂志, 2019, 36 (1): 7-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZFSJ201901002.htm
    [15] Andica C, Kamagata K, Hatano T, et al. Neurocognitive and psychiatric disorders-related axonal degeneration in Parkinson's disease[J]. J Neurosci Res, 2020, 98(5): 936-49. doi: 10.1002/jnr.24584
    [16] Chen FX, Kang DZ, Chen FY, et al. Gray matter atrophy associated with mild cognitive impairment in Parkinson's disease[J]. Neurosci Lett, 2016, 617: 160-5. doi: 10.1016/j.neulet.2015.12.055
    [17] Filippi M, Canu E, Donzuso G, et al. Tracking cortical changes throughout cognitive decline in Parkinson's disease[J]. Mov Disord, 2020, 35(11): 1987-98. doi: 10.1002/mds.28228
    [18] Lim Y, Kehm VM, Lee EB, et al. -syn suppression reverses synaptic and memory defects in a mouse model of dementia with lewy bodies[J]. J Neurosci, 2011, 31(27): 10076-87. doi: 10.1523/JNEUROSCI.0618-11.2011
    [19] Longhena F, Faustini G, Varanita T, et al. Synapsin Ⅲ is a key component of α- synuclein fibrils in Lewy bodies of PD brains[J]. Brain Pathol, 2018, 28(6): 875-88. doi: 10.1111/bpa.12587
    [20] 马东辉, 刘存存, 黄小盼, 等. 磁共振轴突定向弥散和密度成像技术评估帕金森患者小脑微结构变化[J]. 分子影像学杂志, 2021, 44(1): 22-6. doi: 10.12122/j.issn.1674-4500.2021.01.04
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  69
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 网络出版日期:  2022-03-29
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日