留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

多模态超声联合深度学习对乳腺癌新辅助化疗疗效及侵袭性评价的研究进展

刘锦辉 冷晓玲

刘锦辉, 冷晓玲. 多模态超声联合深度学习对乳腺癌新辅助化疗疗效及侵袭性评价的研究进展[J]. 分子影像学杂志, 2021, 44(6): 1034-1040. doi: 10.12122/j.issn.1674-4500.2021.06.30
引用本文: 刘锦辉, 冷晓玲. 多模态超声联合深度学习对乳腺癌新辅助化疗疗效及侵袭性评价的研究进展[J]. 分子影像学杂志, 2021, 44(6): 1034-1040. doi: 10.12122/j.issn.1674-4500.2021.06.30
LIU Jinhui, LENG Xiaoling. Research progress of multimodal ultrasound combined with deep learning in the evaluation of the efficacy of neoadjuvant chemotherapy and invasiveness for breast cancer[J]. Journal of Molecular Imaging, 2021, 44(6): 1034-1040. doi: 10.12122/j.issn.1674-4500.2021.06.30
Citation: LIU Jinhui, LENG Xiaoling. Research progress of multimodal ultrasound combined with deep learning in the evaluation of the efficacy of neoadjuvant chemotherapy and invasiveness for breast cancer[J]. Journal of Molecular Imaging, 2021, 44(6): 1034-1040. doi: 10.12122/j.issn.1674-4500.2021.06.30

多模态超声联合深度学习对乳腺癌新辅助化疗疗效及侵袭性评价的研究进展

doi: 10.12122/j.issn.1674-4500.2021.06.30
基金项目: 

新疆自治区科技支疆项目 2020E0269

详细信息
    作者简介:

    刘锦辉,硕士研究生,E-mail: 2265986495@qq.com

    通讯作者:

    冷晓玲,博土后,副主任医师,E-mail: 58281431@qq.com

Research progress of multimodal ultrasound combined with deep learning in the evaluation of the efficacy of neoadjuvant chemotherapy and invasiveness for breast cancer

  • 摘要: 近年来,医学影像诊断的迅速发展,越来越多的超声成像技术被应用于乳腺癌的诊疗中,新辅助化疗是乳腺癌患者的标准治疗方案,能有效降低肿瘤临床分期,提高患者的保乳率,从而改善患者的预后。目前,主要的超声诊断方式包括常规超声、超声造影、超声弹性成像、三维超声等,联合神经网络深度学习技术,可更高效、精确地实现对乳腺癌患者新辅助化疗后疗效及乳腺癌侵袭性的评价。本文就乳腺癌NAC疗效的评价方法及侵袭性的评价指标、多模态超声联合深度学习对乳腺癌新辅助化疗疗效评价、多模态超声联合深度学习等方面的研究进展进行综述。

     

  • [1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CAACancer J Clin, 2021, 71(3): 209-49. doi: 10.3322/caac.21660
    [2] 钱明, 黄剑浜, 肖杨, 等. 利用高频超声刺激探究乳腺癌细胞侵袭性[C]//2016年全国声学学术会议论文集. 武汉, 2016: 447-50.
    [3] 邵志敏, 江泽飞, 李俊杰, 等. 中国乳腺癌新辅助治疗专家共识(2019年版)[J]. 中国癌症杂志, 2019, 29(5): 390-400. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGAZ201905012.htm
    [4] Spring LM, Fell G, Arfe A, et al. Pathologic complete response after neoadjuvant chemotherapy and impact on breast cancer recurrence and survival: a comprehensive meta-analysis[J]. Clin Cancer Res, 2020, 26(12): 2838-48. doi: 10.1158/1078-0432.CCR-19-3492
    [5] Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis [J]. Lancet, 2014, 384(9938): 164-72. doi: 10.1016/S0140-6736(13)62422-8
    [6] Evans A, Whelehan P, Thompson A, et al. Identification of pathological complete response after neoadjuvant chemotherapy for breast cancer: comparison of greyscale ultrasound, shear wave elastography, and MRI [J]. Clin Radiol, 2018, 73(10): 910. e1-910. e6. http://www.sciencedirect.com/science/article/pii/S000992601830223X
    [7] 《乳腺癌新辅助治疗的病理诊断专家共识(版)》编写组. 乳腺癌新辅助治疗的病理诊断专家共识(2020版)[J]. 中华病理学杂志, 2020, 49 (4): 296-304. doi: 10.3760/cma.j.cn112151-20200102-00007
    [8] Croshaw R, Shapiro-Wright H, Svensson E, et al. Accuracy of clinical examination, digital mammogram, ultrasound, and MRI in determining postneoadjuvant pathologic tumor response in operable breast cancer patients [J]. Ann Surg Oncol, 2011, 18(11): 3160-3. doi: 10.1245/s10434-011-1919-5
    [9] Scheel JR, Kim E, Partridge SC, et al. MRI, clinical examination, and mammography for preoperative assessment of residual disease and pathologic complete response after neoadjuvant chemotherapy for breast cancer: ACRIN 6657 trial[J]. AJR Am J Roentgenol, 2018, 210(6): 1376-85. doi: 10.2214/AJR.17.18323
    [10] Chagpar AB, Middleton LP, Sahin AA, et al. Accuracy of physical examination, ultrasonography, and mammography in predicting residual pathologic tumor size in patients treated with neoadjuvant chemotherapy[J]. Ann Surg, 2006, 243(2): 257-64. doi: 10.1097/01.sla.0000197714.14318.6f
    [11] Dubsky P, Pinker K, Cardoso F, et al. Breast conservation and axillary management after primary systemic therapy in patients with early-stage breast cancer: the Lucerne toolbox[J]. Lancet Oncol, 2021, 22(1): e18-28. doi: 10.1016/S1470-2045(20)30580-5
    [12] 冷晓玲, 马富成. 乳腺癌肿瘤微环境的超声研究进展[J]. 中国临床医学影像杂志, 2015, 26(11): 823-6. https://www.cnki.com.cn/Article/CJFDTOTAL-LYYX201511020.htm
    [13] Harbeck N, Gnant M. Breast cancer[J]. Lancet, 2017, 389(10074): 1134-50. doi: 10.1016/S0140-6736(16)31891-8
    [14] Tarantino P, Hamilton E, Tolaney SM, et al. HER2- low breast cancer: pathological and clinical landscape[J]. J Clin Oncol, 2020, 38 (17): 1951-62. doi: 10.1200/JCO.19.02488
    [15] Denkert C, Seither F, Schneeweiss A, et al. Clinical and molecular characteristics of HER2-low-positive breast cancer: pooled analysis of individual patient data from four prospective, neoadjuvant clinical trials [J]. Lancet Oncol, 2021, 22(8): 1151-61. doi: 10.1016/S1470-2045(21)00301-6
    [16] 中国医师协会精准治疗委员会乳腺癌专业委员会, 中华医学会肿瘤学分会乳腺肿瘤学组, 中国抗癌协会乳腺癌专业委员会, 等. 中国乳腺癌患者BRCA1/2基因检测与临床应用专家共识(2018年版)[J]. 中国癌症杂志, 2018, 28(10): 787-800. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGAZ201810013.htm
    [17] 张海见, 米拉·也尔兰, 冷晓玲. 乳腺癌超声征象与肿瘤干细胞及上皮间质转化标志物表达水平的相关性[J]. 分子影像学杂志, 2021, 44 (4): 624-31. doi: 10.12122/j.issn.1674-4500.2021.04.10
    [18] Bae JS, Chang JM, Lee SH, et al. Prediction of invasive breast cancer using shear-wave elastography in patients with biopsy-confirmed ductal carcinoma in situ[J]. Eur Radiol, 2017, 27(1): 7-15. doi: 10.1007/s00330-016-4359-6
    [19] Leng XL, Huang GF, Zhang LH, et al. Changes in tumor stem cell markers and epithelial-mesenchymal transition markers in nonluminal breast cancer after neoadjuvant chemotherapy and their correlation with contrast-enhanced ultrasound[J]. Biomed Res Int, 2020, 2020: 3869538.
    [20] Keune JD, Jeffe DB, Schootman M, et al. Accuracy of ultrasonography and mammography in predicting pathologic response after neoadjuvant chemotherapy for breast cancer[J]. Am J Surg, 2010, 199(4): 477-84. doi: 10.1016/j.amjsurg.2009.03.012
    [21] Makanjuola DI, Alkushi A, Al Anazi K. Defining radiologic complete response using a correlation of presurgical ultrasound and mammographic localization findings with pathological complete response following neoadjuvant chemotherapy in breast cancer[J]. Eur J Radiol, 2020, 130: 109146. doi: 10.1016/j.ejrad.2020.109146
    [22] 闵洁, 蒋殿虎, 彭国平, 等. 超声多模态技术对非哺乳期乳腺炎与乳腺癌的鉴别诊断价值[J]. 中国医学物理学杂志, 2021, 38(3): 337-9. doi: 10.3969/j.issn.1005-202X.2021.03.013
    [23] 谭蜀川, 吴强. 多模态超声对乳腺癌的诊断价值[J]. 影像研究与医学应用, 2021, 5(2): 255-6. doi: 10.3969/j.issn.2096-3807.2021.02.125
    [24] Choi JH, Lim HI, Lee SK, et al. The role of PET CT to evaluate the response to neoadjuvant chemotherapy in advanced breast cancer: comparison with ultrasonography and magnetic resonance imaging [J]. J Surg Oncol, 2010, 102(5): 392-7.
    [25] Zhang Q, Yuan C, Dai W, et al. Evaluating pathologic response of breast cancer to neoadjuvant chemotherapy with computer-extracted features from contrast- enhanced ultrasound videos[J]. Phys Med, 2017, 39: 156-63. doi: 10.1016/j.ejmp.2017.06.023
    [26] Huang Y, Le J, Miao A, et al. Prediction of treatment responses to neoadjuvant chemotherapy in breast cancer using contrast-enhanced ultrasound[J]. Gland Surg, 2021, 10(4): 1280-90. doi: 10.21037/gs-20-836
    [27] Jia K, Li L, Wu XJ, et al. Contrast-enhanced ultrasound for evaluating the pathologic response of breast cancer to neoadjuvant chemotherapy: a meta-analysis [J]. Medicine, 2019, 98(4): e14258. doi: 10.1097/MD.0000000000014258
    [28] Wan CF, Liu XS, Wang L, et al. Quantitative contrast-enhanced ultrasound evaluation of pathological complete response in patients with locally advanced breast cancer receiving neoadjuvant chemotherapy[J]. Eur J Radiol, 2018, 103: 118-23. doi: 10.1016/j.ejrad.2018.04.005
    [29] Falou O, Sadeghi-Naini A, Prematilake S, et al. Evaluation of neoadjuvant chemotherapy response in women with locally advanced breast cancer using ultrasound elastography[J]. Transl Oncol, 2013, 6(1): 17-24. doi: 10.1593/tlo.12412
    [30] Fernandes J, Sannachi L, Tran WT, et al. Monitoring breast cancer response to neoadjuvant chemotherapy using ultrasound strain elastography[J]. Transl Oncol, 2019, 12(9): 1177-84. doi: 10.1016/j.tranon.2019.05.004
    [31] Chang JM, Won JK, Lee KB, et al. Comparison of shear-wave and strain ultrasound elastography in the differentiation of benign and malignant breast lesions[J]. AJR Am J Roentgenol, 2013, 201(2): W347-56. doi: 10.2214/AJR.12.10416
    [32] Fang C, Yang TWYZJXW. Value of tissue elastography in the prediction of efficacy of neoadjuvant chemotherapy in breast cancer [J]. j buon, 2019, 24(2): 555-9. http://www.researchgate.net/publication/333024607_Value_of_tissue_elastography_in_the_prediction_of_efficacy_of_neoadjuvant_chemotherapy_in_breast_cancer
    [33] Gu J, Polley EC, Denis M, et al. Early assessment of shear wave elastography parameters foresees the response to neoadjuvant chemotherapy in patients with invasive breast cancer[J]. Breast Cancer Res, 2021, 23(1): 52. doi: 10.1186/s13058-021-01429-4
    [34] Wang BH, Jiang TA, Huang M, et al. Evaluation of the response of breast cancer patients to neoadjuvant chemotherapy by combined contrast-enhanced ultrasonography and ultrasound elastography[J]. Exp Ther Med, 2019, 17(5): 3655-63. http://www.ingentaconnect.com/content/sp/etm/2019/00000017/00000005/art00049
    [35] 康佳, 吴桐, 张蕾, 等. 不同分子分型乳腺癌的多模态超声特征和临床病理对照研究[J]. 中华超声影像学杂志, 2020(4): 330-6. doi: 10.3760/cma.j.cn131148-20190926-00591
    [36] Maier AM, Heil J, Harcos A, et al. Prediction of pathological complete response in breast cancer patients during neoadjuvant chemotherapy: Is shear wave elastography a useful tool in clinical routine?[J]. Eur J Radiol, 2020, 128: 109025. doi: 10.1016/j.ejrad.2020.109025
    [37] 李思奕, 马富成, 冷晓玲. 超声造影评估不同乳腺背景下乳腺癌新辅助化疗疗效的优势[J]. 新疆医科大学学报, 2021, 44(1): 55-9. https://www.cnki.com.cn/Article/CJFDTOTAL-XJYY202101012.htm
    [38] 吕斌, 张维, 肖芳. 二维超声及实时三维超声鉴别诊断乳腺肿块良恶性的临床价值[J]. 临床超声医学杂志, 2011, 13(9): 637-8. doi: 10.3969/j.issn.1008-6978.2011.09.030
    [39] 热西达·加帕尔, 马富成, 耿怡, 等. 三维容积超声在小乳癌诊断中的临床应用价值[J]. 新疆医科大学学报, 2017, 40(3): 269-74. doi: 10.3969/j.issn.1009-5551.2017.03.001
    [40] Xu G, Han T, Yao MH, et al. Three-dimensional ultrasonography for the prediction of breast cancer prognosis[J]. j buon, 2014, 19(3): 643-9. http://en.cnki.com.cn/Article_en/CJFDTOTAL-LCCY201402021.htm
    [41] Wojcinski S, Farrokh A, Hille U, et al. The Automated Breast Volume Scanner (ABVS): initial experiences in lesion detection compared with conventional handheld B-mode ultrasound: a pilot study of 50 cases [J]. Int J Womens Health, 2011, 3: 337-46. http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEhJQdWJNZWQwMDAwMDE2MzQ1ODYaCGdpMTVtY2Vi
    [42] D'Angelo A, Orlandi A, Bufi E, et al. Automated breast volume scanner (ABVS) compared to handheld ultrasound (HHUS) and contrast- enhanced magnetic resonance imaging (CE-MRI) in the early assessment of breast cancer during neoadjuvant chemotherapy: an emerging role to monitoring tumor response?[J]. Radiol Med, 2021, 126(4): 517-26. doi: 10.1007/s11547-020-01319-3
    [43] van Egdom LSE, Lagendijk M, Heijkoop EHM, et al. Threedimensional ultrasonography of the breast; An adequate replacement for MRI in neoadjuvant chemotherapy tumour response evaluation?-RESPONDER trial [J]. Eur J Radiol, 2018, 104: 94-100. doi: 10.1016/j.ejrad.2018.05.005
    [44] Leng X, Huang G, Yao L, et al. Role of multi-mode ultrasound in the diagnosis of level 4 BI-RADS breast lesions and Logistic regression model [J]. Int J Clin Exp Med, 2015, 8(9): 15889-99. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.738.8764&rep=rep1&type=pdf
    [45] 苏彤, 赵燕妹, 张玲, 等. 多模态超声评估乳腺癌新辅助化疗的价值[J]. 南京医科大学学报: 自然科学版, 2019, 39(3): 414-7. https://www.cnki.com.cn/Article/CJFDTOTAL-NJYK201903022.htm
    [46] 彭娟, 邓倾, 曹省, 等. 超声定量参数早期预测乳腺癌新辅助化疗效果的价值[J]. 中华超声影像学杂志, 2021, 30(6): 513-8. doi: 10.3760/cma.j.cn131148-20201230-00988
    [47] Palshof FK, Lanng C, Kroman N, et al. Prediction of pathologic complete response in breast cancer patients comparing magnetic resonance imaging with ultrasound in neoadjuvant setting[J]. Ann Surg Oncol, 2021, 28(12): 7421-9. doi: 10.1245/s10434-021-10117-8
    [48] Ledley RS. High-speed photomicrographic analysis by digital computer [J]. Med Biol Illus, 1966, 16(2): 114-5. http://www.ncbi.nlm.nih.gov/pubmed/5934293
    [49] Rebolj M, Assi V, Brentnall A, et al. Addition of ultrasound to mammography in the case of dense breast tissue: systematic review and meta-analysis [J]. Br J Cancer, 2018, 118(12): 1559-70. doi: 10.1038/s41416-018-0080-3
    [50] Fukushima K. Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position [J]. Biol Cybern, 1980, 36(4): 193-202. doi: 10.1007/BF00344251
    [51] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proc IEEE, 1998, 86(11): 2278-324. doi: 10.1109/5.726791
    [52] Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge[J]. Int J Comput Vis, 2015, 115(3): 211-52. doi: 10.1007/s11263-015-0816-y
    [53] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. 3rd Int Conf Learn Represent ICLR 2015 Conf Track Proc, 2015. http://www.islab.ntua.gr/attachments/article/92/1409.1556.pdf
    [54] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition[C]//2016 IEEE conference on computer vision and pattern recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 770-8.
    [55] Szegedy C, Liu W, Jia YQ, et al. Going deeper with convolutions[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 7-12, 2015, Boston, MA. IEEE, 2015: 1-9.
    [56] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]//Med Image Comput Comput Assist Interv MICCAI 2015. DOI: 10.1007/978-3-319-24574-4_28.
    [57] 盖荣丽, 蔡建荣, 王诗宇, 等. 卷积神经网络在图像识别中的应用研究综述[J]. 小型微型计算机系统, 2021, 42(9): 1980-4. doi: 10.3969/j.issn.1000-1220.2021.09.030
    [58] Bao H, Chen T, Zhu J, et al. CEUS-based radiomics can show changes in protein levels in liver metastases after incomplete thermal ablation[J]. Front Oncol, 2021, 11: 694102. doi: 10.3389/fonc.2021.694102
    [59] Narang A, Bae R, Hong H, et al. Utility of a deep-learning algorithm to guide novices to acquire echocardiograms for limited diagnostic use[J]. JAMA Cardiol, 2021, 6(6): 624-32. doi: 10.1001/jamacardio.2021.0185
    [60] Shen D, Wu G, Suk HI. Deep learning in medical image analysis[J]. Annu Rev Biomed Eng, 2017, 19: 221-48. doi: 10.1146/annurev-bioeng-071516-044442
    [61] 江帆. 卷积神经网络在乳腺肿块分类中的研究与应用[D]. 昆明: 昆明理工大学, 2017.
    [62] 梁舒. 基于残差学习U型卷积神经网络的乳腺超声图像肿瘤分割研究[D]. 广州: 华南理工大学, 2018.
    [63] Yap MH, Pons G, Marti J, et al. Automated breast ultrasound lesions detection using convolutional neural networks[J]. IEEE J Biomed Health Inform, 2018, 22(4): 1218-26. doi: 10.1109/JBHI.2017.2731873
    [64] Moon WK, Lee YW, Ke HH, et al. Computer-aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks[J]. Comput Methods Programs Biomed, 2020, 190: 105361. doi: 10.1016/j.cmpb.2020.105361
    [65] Gómez-Flores W, Coelho de Albuquerque Pereira W. A comparative study of pre-trained convolutional neural networks for semantic segmentation of breast tumors in ultrasound[J]. Comput Biol Med, 2020, 126: 104036. doi: 10.1016/j.compbiomed.2020.104036
    [66] 赵玙. 基于人工智能超声乳腺结节良恶性鉴别诊断及预测乳腺癌腋窝淋巴结受侵的价值研究[D]. 南昌: 南昌大学, 2021.
    [67] Fujioka T, Katsuta L, Kubota K, et al. Classification of breast masses on ultrasound shear wave elastography using convolutional neural networks [J]. Ultrason Imaging, 2020, 42(4/5): 213-20. http://www.researchgate.net/publication/341948949_Classification_of_Breast_Masses_on_Ultrasound_Shear_Wave_Elastography_using_Convolutional_Neural_Networks
    [68] 吕宁. 基于深度学习的乳腺病变横纵向超声检测与分类方法开发[D]. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院), 2021.
    [69] 王彤, 何萍, 苏畅, 等. 计算机辅助多模态融合超声诊断乳腺良恶性肿瘤[J]. 中国医学影像技术, 2021, 37(8): 1210-3. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXX202108027.htm
    [70] Liu SF, Wang Y, Yang X, et al. Deep learning in medical ultrasound analysis: a review[J]. Engineering, 2019, 5(2): 261-75. doi: 10.1016/j.eng.2018.11.020
    [71] Hadad O, Bakalo R, Ben-Ari R, et al. Classification of breast lesions using cross-modal deep learning[C]//2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). April 18-21, 2017. Melbourne, Australia. IEEE, 2017.
    [72] Kumar V, Webb JM, Gregory A, et al. Automated and real-time segmentation of suspicious breast masses using convolutional neural network[J]. PLoS One, 2018, 13(5): e0195816. doi: 10.1371/journal.pone.0195816
    [73] Choi JH, Kim HA, Kim W, et al. Early prediction of neoadjuvant chemotherapy response for advanced breast cancer using PET/MRI image deep learning[J]. Sci Rep, 2020, 10(1): 21149. doi: 10.1038/s41598-020-77875-5
    [74] Byra M, Dobruch-Sobczak K, Klimonda Z, et al. Early prediction of response to neoadjuvant chemotherapy in breast cancer sonography using Siamese convolutional neural networks[J]. IEEE J Biomed Health Inform, 2021, 25(3): 797-805. doi: 10.1109/JBHI.2020.3008040
    [75] Jiang M, Li CL, Luo XM, et al. Ultrasound- based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer [J]. Eur J Cancer, 2021, 147: 95-105. doi: 10.1016/j.ejca.2021.01.028
    [76] Gu JH, Tong T, He C, et al. Deep learning radiomics of ultrasonography can predict response to neoadjuvant chemotherapy in breast cancer at an early stage of treatment: a prospective study[J]. Eur Radiol, 2021: 1-11.
  • 加载中
计量
  • 文章访问数:  492
  • HTML全文浏览量:  295
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-02
  • 网络出版日期:  2022-01-05
  • 刊出日期:  2021-11-20

目录

    /

    返回文章
    返回