留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

前列腺癌分子影像学诊断与治疗进展

包森林 红华

包森林, 红华. 前列腺癌分子影像学诊断与治疗进展[J]. 分子影像学杂志, 2021, 44(2): 396-399. doi: 10.12122/j.issn.1674-4500.2021.02.36
引用本文: 包森林, 红华. 前列腺癌分子影像学诊断与治疗进展[J]. 分子影像学杂志, 2021, 44(2): 396-399. doi: 10.12122/j.issn.1674-4500.2021.02.36
Senlin BAO, Hua HONG. Advances in molecular imaging diagnosis and treatment of prostate cancer[J]. Journal of Molecular Imaging, 2021, 44(2): 396-399. doi: 10.12122/j.issn.1674-4500.2021.02.36
Citation: Senlin BAO, Hua HONG. Advances in molecular imaging diagnosis and treatment of prostate cancer[J]. Journal of Molecular Imaging, 2021, 44(2): 396-399. doi: 10.12122/j.issn.1674-4500.2021.02.36

前列腺癌分子影像学诊断与治疗进展

doi: 10.12122/j.issn.1674-4500.2021.02.36
基金项目: 

内蒙古自治区科技计划项目 2019GG101

详细信息
    作者简介:

    包森林,在读硕士研究生,E-mail: 372887184@qq.com

    通讯作者:

    红华,医学博士,主任医师,E-mail: 6622306hong@163.com

Advances in molecular imaging diagnosis and treatment of prostate cancer

  • 摘要: 前列腺癌严重威胁着男性健康,近年来我国前列腺癌的发病率也迅速增加,早期发现前列腺癌对于提高生存率具有十分积极的意义。目前各前列腺癌指南中仍需通过超声引导下的前列腺活检确诊,再通过主动监测、根治性切除术、放疗及局部放疗等手段进行治疗。但前列腺活检增加了尿潴留、血尿等不必要的风险,还会遗漏多达1/3的癌组织,且目前的治疗方法因缺乏特异性而对患者进行过度或不足的治疗。近年来,对前列腺癌的诊断和治疗已经迈入分子水平,通过分子影像学进行无创精准的诊断和治疗展现出巨大的发展前景。本文将从核医学分子成像、MR分子成像、光学分子成像、超声分子成像4种常见分子影像学技术在前列腺癌的应用进展进行回顾并作一综述。

     

  • [1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CACancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492
    [2] Feng RM, Zong YN, Cao SM, et al. Current cancer situation in China: good or bad news from the 2018 global cancer statistics?[J]. Cancer Commun (Lond), 2019, 39(1): 22. doi: 10.1186/s40880-019-0368-6
    [3] Mottet N, van den Bergh RCN, Briers E, et al. EAU-EANM-ESTROESUR-SIOG guidelines on prostate cancer-2020 update. part 1: screening, diagnosis, and local treatment with curative intent[J]. Eur Urol, 2021, 79(2): 243-62. doi: 10.1016/j.eururo.2020.09.042
    [4] Reinicke K, Sotomayor P, Cisterna P, et al. Cellular distribution of Glut-1 and Glut-5 in benign and malignant human prostate tissue[J]. J Cell Biochem, 2012, 113(2): 553-62. doi: 10.1002/jcb.23379
    [5] Mortensen MA, Vilstrup MH, Poulsen MH, et al. A prospective study on dual time 18F-FDG-PET/CT in high-risk prostate cancer patients[J]. BMC Res Notes, 2018, 11(1): 871. doi: 10.1186/s13104-018-3985-2
    [6] Carroll PH, Mohler JL. NCCN guidelines updates: prostate cancer and prostate cancer early detection[J]. J Natl Compr Canc Netw, 2018, 16(5S): 620-3. doi: 10.6004/jnccn.2018.0036
    [7] Maruyama K, Utsunomia K, Nakamoto T, et al. Utility of F-18 FDG PET/CT for detection of bone marrow metastases in prostate cancer patients treated with Radium-223[J]. Asia Ocean J Nucl Med Biol, 2018, 6(1): 61-7. http://europepmc.org/articles/PMC5765335/
    [8] Oldan JD, Chin BB. FDG PET/CT imaging of prostate carcinosarcoma[J]. Clin Nucl Med, 2016, 41(8): 629-31. doi: 10.1097/RLU.0000000000001250
    [9] Michaud L, Touijer K A, Mauguen A, et al. (11)C-Choline PET/CT in recurrent prostate cancer: Retrospective analysis in a large U.S. patient series[J]. J Nucl Med, 2020, 61(6): 827-33. http://www.ncbi.nlm.nih.gov/pubmed/31862801
    [10] Schwenck J, Rempp H, Reischl G, et al. Comparison of 68Galabelled PSMA-11 and 11C-choline in the detection of prostate cancer metastases by PET/CT[J]. Eur J Nucl Med Mol Imaging, 2017, 44(1): 92-101. doi: 10.1007/s00259-016-3490-6
    [11] Alberts I, Sachpekidis C, Fech V, et al. PSMA-negative prostate cancer and the continued value of choline-PET/CT[J]. Nuklearmedizin, 2020, 59(1): 33-4. doi: 10.1055/a-1044-1855
    [12] Sheikhbahaei S, Jones KM, Werner RA, et al. 18F-NaF-PET/CT for the detection of bone metastasis in prostate cancer: a meta-analysis of diagnostic accuracy studies[J]. Ann Nucl Med, 2019, 33(5): 351-61. doi: 10.1007/s12149-019-01343-y
    [13] Jambor I, Kuisma A, Ramadan S, et al. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETAclinical trial[J]. Acta Oncol, 2016, 55(1): 59-67. doi: 10.3109/0284186X.2015.1027411
    [14] Wallitt KL, Khan SR, Dubash S, et al. Clinical PET imaging in prostate cancer[J]. Radiographics, 2017, 37(5): 1512-36. doi: 10.1148/rg.2017170035
    [15] Onal C, Torun N, Akyol F, et al. Integration of 68Ga-PSMA-PET/CT in radiotherapy planning for prostate cancer patients[J]. Clin Nucl Med, 2019, 44(9): e510-6. doi: 10.1097/RLU.0000000000002691
    [16] Parent EE, Schuster DM. Update on 18F-fluciclovine PET for prostate cancer imaging[J]. J Nucl Med, 2018, 59(5): 733-9. doi: 10.2967/jnumed.117.204032
    [17] Savir-Baruch B, Zanoni L, Schuster DM. Imaging of prostate cancer using fluciclovine[J]. Urol Clin NorthAm, 2018, 45(3): 489-502. doi: 10.1016/j.ucl.2018.03.015
    [18] Ho CL, Wu KK, Chen SR. Current status of PSMA PET imaging in prostate cancer[J]. Asia Pac J Clin Oncol, 2020, 16(Suppl 3): 7-11. doi: 10.1111/ajco.13313
    [19] Grubmüller B, Baltzer P, Hartenbach S, et al. PSMA ligand PET/MRI for primary prostate cancer: staging performance and clinical impact[J]. Clin Cancer Res, 2018, 24(24): 6300-7. doi: 10.1158/1078-0432.CCR-18-0768
    [20] Fendler WP, Calais J, Eiber M, et al. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial[J]. JAMAOncol, 2019, 5(6): 856-63. http://www.sciencedirect.com/science/article/pii/S0302283819304208
    [21] Sachpekidis C, Afshar-Oromieh A, Kopka K, et al. 18F-PSMA-1007 multiparametric, dynamic PET/CT in biochemical relapse and progression of prostate cancer[J]. Eur J Nucl Med Mol Imaging, 2020, 47(3): 592-602. doi: 10.1007/s00259-019-04569-0
    [22] Giesel FL, Knorr K, Spohn F, et al. Detection efficacy of 18F-PSMA-1007 PET/CT in 251 patients with biochemical recurrence of prostate cancer after radical prostatectomy[J]. J Nucl Med, 2019, 60 (3): 362-8. doi: 10.2967/jnumed.118.212233
    [23] 田迎, 郑玲, 卢光明. 近红外荧光染料在肿瘤特异性成像中的研究[J]. 临床放射学杂志, 2012, 31(6): 897-9. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFS201206045.htm
    [24] Wu XM, Yu GP, Lindner D, et al. Peptide targeted high-resolution molecular imaging of prostate cancer with MRI[J]. Am J Nucl Med Mol Imaging, 2014, 4(6): 525-36. http://pubmedcentralcanada.ca/pmcc/articles/PMC4171839/
    [25] Bates D, Abraham S, Campbell M, et al. Development and characterization of an antibody-labeled super-paramagnetic iron oxide contrast agent targeting prostate cancer cells for magnetic resonance imaging[J]. PLoS One, 2014, 9(5): e97220. doi: 10.1371/journal.pone.0097220
    [26] 闵祥德, 王良, 冯朝燕, 等. 前列腺癌磁共振分子影像学研究进展[J]. 中国医学影像技术, 2016, 32(11): 1769-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXX201611047.htm
    [27] Cai WG, Zhu DY, Byanju S, et al. Magnetic resonance spectroscopy imaging in diagnosis of suspicious prostate cancer: a meta-analysis[J]. Medicine (Baltimore), 2019, 98(14): e14891. doi: 10.1097/MD.0000000000014891
    [28] Neuman BP, Eifler JB, Castanares M, et al. Real-time, near-infrared fluorescence imaging with an optimized dye/light source/camera combination for surgical guidance of prostate cancer[J]. Clin Cancer Res, 2015, 21(4): 771-80. doi: 10.1158/1078-0432.CCR-14-0891
    [29] Tsai WK, Zettlitz KA, Tavaré R, et al. Dual-modality ImmunoPET/ fluorescence imaging of prostate cancer with an anti-PSCA cysminibody[J]. Theranostics, 2018, 8(21): 5903-14. doi: 10.7150/thno.27679
    [30] Schottelius M, Wurzer A, Wissmiller K, et al. Synthesis and preclinical characterization of the PSMA-targeted hybrid tracer PSMA-I & F for nuclear and fluorescence imaging of prostate cancer[J]. J Nucl Med, 2019, 60(1): 71-8. doi: 10.2967/jnumed.118.212720
    [31] 易小敏. 近红外荧光染剂在前列腺癌诊治中的应用研究[D]. 西安: 第四军医大学, 2015.
    [32] Smeenge M, Tranquart F, Mannaerts CK, et al. First-in-human ultrasound molecular imaging with a VEGFR2-specific ultrasound molecular contrast agent (BR55) in prostate cancer: a safety and feasibility pilot study[J]. Invest Radiol, 2017, 52(7): 419-27. doi: 10.1097/RLI.0000000000000362
    [33] Perera RH, de Leon A, Wang XN, et al. Real time ultrasound molecular imaging of prostate cancer with PSMA-targeted nanobubbles[J]. Nanomed-Nanotechnol Biol Med, 2020, 28: 102213. doi: 10.1016/j.nano.2020.102213
    [34] Wang YX, Lan MM, Shen DJ, et al. Targeted nanobubbles carrying indocyanine green for ultrasound, photoacoustic and fluorescence imaging of prostate cancer[J]. Int J Nanomedicine, 2020, 15: 4289-309. doi: 10.2147/IJN.S243548
    [35] Kratochwil C, Giesel FL, Stefanova M, et al. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617[J]. J Nucl Med, 2016, 57(8): 1170-6. doi: 10.2967/jnumed.115.171397
    [36] Yuan P, Song DK. MRI tracing non-invasive TiO2-based nanoparticles activated by ultrasound for multi-mechanism therapy of prostatic cancer[J]. Nanotechnology, 2018, 29(12): 125101. doi: 10.1088/1361-6528/aaa92a
    [37] Zheng Y, Hou G, Zhang G, et al. The near-infrared fluorescent dye IR-780 was coupled with cabazitaxel for castration-resistant prostate cancer imaging and therapy[J]. Invest New Drugs, 2020, 38(6): 1641-52. doi: 10.1007/s10637-020-00934-1
    [38] Lan M, Zhu L, Wang Y, et al. Multifunctional nanobubbles carrying indocyanine green and paclitaxel for molecular imaging and the treatment of prostate cancer[J]. J Nanobiotechnology, 2020, 18(1): 121. doi: 10.1186/s12951-020-00650-1
  • 加载中
计量
  • 文章访问数:  607
  • HTML全文浏览量:  272
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-28
  • 刊出日期:  2021-03-20

目录

    /

    返回文章
    返回