Advances in molecular imaging diagnosis and treatment of prostate cancer
-
摘要: 前列腺癌严重威胁着男性健康,近年来我国前列腺癌的发病率也迅速增加,早期发现前列腺癌对于提高生存率具有十分积极的意义。目前各前列腺癌指南中仍需通过超声引导下的前列腺活检确诊,再通过主动监测、根治性切除术、放疗及局部放疗等手段进行治疗。但前列腺活检增加了尿潴留、血尿等不必要的风险,还会遗漏多达1/3的癌组织,且目前的治疗方法因缺乏特异性而对患者进行过度或不足的治疗。近年来,对前列腺癌的诊断和治疗已经迈入分子水平,通过分子影像学进行无创精准的诊断和治疗展现出巨大的发展前景。本文将从核医学分子成像、MR分子成像、光学分子成像、超声分子成像4种常见分子影像学技术在前列腺癌的应用进展进行回顾并作一综述。Abstract: Prostate cancer is a serious threat to men's health. In recent years, the incidence of prostate cancer in my country has also increased rapidly. Early detection of prostate cancer has a very positive significance for improving the survival rate. At present, the prostate cancer guidelines still need to be diagnosed by ultrasound-guided prostate biopsy, and then treated by means of active monitoring, radical resection, radiotherapy, and local radiotherapy. However, prostate biopsy increases unnecessary risks such as urinary retention, hematuria, and misses up to one-third of cancer tissues. The current treatment methods lack specificity and over-or under-treatment of patients. In recent years, the diagnosis and treatment of prostate cancer have entered the molecular level, and the non-invasive and accurate diagnosis and treatment of prostate cancer through molecular imaging has shown great development prospects. This article reviews and summarizes the application progress in prostate cancer of four common molecular imaging technologies, nuclear medicine molecular imaging, MR molecular imaging, optical molecular imaging, and ultrasound molecular imaging.
-
Key words:
- prostate cancer /
- molecular imaging diagnosis /
- targeted therapy
-
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CACancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492 [2] Feng RM, Zong YN, Cao SM, et al. Current cancer situation in China: good or bad news from the 2018 global cancer statistics?[J]. Cancer Commun (Lond), 2019, 39(1): 22. doi: 10.1186/s40880-019-0368-6 [3] Mottet N, van den Bergh RCN, Briers E, et al. EAU-EANM-ESTROESUR-SIOG guidelines on prostate cancer-2020 update. part 1: screening, diagnosis, and local treatment with curative intent[J]. Eur Urol, 2021, 79(2): 243-62. doi: 10.1016/j.eururo.2020.09.042 [4] Reinicke K, Sotomayor P, Cisterna P, et al. Cellular distribution of Glut-1 and Glut-5 in benign and malignant human prostate tissue[J]. J Cell Biochem, 2012, 113(2): 553-62. doi: 10.1002/jcb.23379 [5] Mortensen MA, Vilstrup MH, Poulsen MH, et al. A prospective study on dual time 18F-FDG-PET/CT in high-risk prostate cancer patients[J]. BMC Res Notes, 2018, 11(1): 871. doi: 10.1186/s13104-018-3985-2 [6] Carroll PH, Mohler JL. NCCN guidelines updates: prostate cancer and prostate cancer early detection[J]. J Natl Compr Canc Netw, 2018, 16(5S): 620-3. doi: 10.6004/jnccn.2018.0036 [7] Maruyama K, Utsunomia K, Nakamoto T, et al. Utility of F-18 FDG PET/CT for detection of bone marrow metastases in prostate cancer patients treated with Radium-223[J]. Asia Ocean J Nucl Med Biol, 2018, 6(1): 61-7. http://europepmc.org/articles/PMC5765335/ [8] Oldan JD, Chin BB. FDG PET/CT imaging of prostate carcinosarcoma[J]. Clin Nucl Med, 2016, 41(8): 629-31. doi: 10.1097/RLU.0000000000001250 [9] Michaud L, Touijer K A, Mauguen A, et al. (11)C-Choline PET/CT in recurrent prostate cancer: Retrospective analysis in a large U.S. patient series[J]. J Nucl Med, 2020, 61(6): 827-33. http://www.ncbi.nlm.nih.gov/pubmed/31862801 [10] Schwenck J, Rempp H, Reischl G, et al. Comparison of 68Galabelled PSMA-11 and 11C-choline in the detection of prostate cancer metastases by PET/CT[J]. Eur J Nucl Med Mol Imaging, 2017, 44(1): 92-101. doi: 10.1007/s00259-016-3490-6 [11] Alberts I, Sachpekidis C, Fech V, et al. PSMA-negative prostate cancer and the continued value of choline-PET/CT[J]. Nuklearmedizin, 2020, 59(1): 33-4. doi: 10.1055/a-1044-1855 [12] Sheikhbahaei S, Jones KM, Werner RA, et al. 18F-NaF-PET/CT for the detection of bone metastasis in prostate cancer: a meta-analysis of diagnostic accuracy studies[J]. Ann Nucl Med, 2019, 33(5): 351-61. doi: 10.1007/s12149-019-01343-y [13] Jambor I, Kuisma A, Ramadan S, et al. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETAclinical trial[J]. Acta Oncol, 2016, 55(1): 59-67. doi: 10.3109/0284186X.2015.1027411 [14] Wallitt KL, Khan SR, Dubash S, et al. Clinical PET imaging in prostate cancer[J]. Radiographics, 2017, 37(5): 1512-36. doi: 10.1148/rg.2017170035 [15] Onal C, Torun N, Akyol F, et al. Integration of 68Ga-PSMA-PET/CT in radiotherapy planning for prostate cancer patients[J]. Clin Nucl Med, 2019, 44(9): e510-6. doi: 10.1097/RLU.0000000000002691 [16] Parent EE, Schuster DM. Update on 18F-fluciclovine PET for prostate cancer imaging[J]. J Nucl Med, 2018, 59(5): 733-9. doi: 10.2967/jnumed.117.204032 [17] Savir-Baruch B, Zanoni L, Schuster DM. Imaging of prostate cancer using fluciclovine[J]. Urol Clin NorthAm, 2018, 45(3): 489-502. doi: 10.1016/j.ucl.2018.03.015 [18] Ho CL, Wu KK, Chen SR. Current status of PSMA PET imaging in prostate cancer[J]. Asia Pac J Clin Oncol, 2020, 16(Suppl 3): 7-11. doi: 10.1111/ajco.13313 [19] Grubmüller B, Baltzer P, Hartenbach S, et al. PSMA ligand PET/MRI for primary prostate cancer: staging performance and clinical impact[J]. Clin Cancer Res, 2018, 24(24): 6300-7. doi: 10.1158/1078-0432.CCR-18-0768 [20] Fendler WP, Calais J, Eiber M, et al. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial[J]. JAMAOncol, 2019, 5(6): 856-63. http://www.sciencedirect.com/science/article/pii/S0302283819304208 [21] Sachpekidis C, Afshar-Oromieh A, Kopka K, et al. 18F-PSMA-1007 multiparametric, dynamic PET/CT in biochemical relapse and progression of prostate cancer[J]. Eur J Nucl Med Mol Imaging, 2020, 47(3): 592-602. doi: 10.1007/s00259-019-04569-0 [22] Giesel FL, Knorr K, Spohn F, et al. Detection efficacy of 18F-PSMA-1007 PET/CT in 251 patients with biochemical recurrence of prostate cancer after radical prostatectomy[J]. J Nucl Med, 2019, 60 (3): 362-8. doi: 10.2967/jnumed.118.212233 [23] 田迎, 郑玲, 卢光明. 近红外荧光染料在肿瘤特异性成像中的研究[J]. 临床放射学杂志, 2012, 31(6): 897-9. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFS201206045.htm [24] Wu XM, Yu GP, Lindner D, et al. Peptide targeted high-resolution molecular imaging of prostate cancer with MRI[J]. Am J Nucl Med Mol Imaging, 2014, 4(6): 525-36. http://pubmedcentralcanada.ca/pmcc/articles/PMC4171839/ [25] Bates D, Abraham S, Campbell M, et al. Development and characterization of an antibody-labeled super-paramagnetic iron oxide contrast agent targeting prostate cancer cells for magnetic resonance imaging[J]. PLoS One, 2014, 9(5): e97220. doi: 10.1371/journal.pone.0097220 [26] 闵祥德, 王良, 冯朝燕, 等. 前列腺癌磁共振分子影像学研究进展[J]. 中国医学影像技术, 2016, 32(11): 1769-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXX201611047.htm [27] Cai WG, Zhu DY, Byanju S, et al. Magnetic resonance spectroscopy imaging in diagnosis of suspicious prostate cancer: a meta-analysis[J]. Medicine (Baltimore), 2019, 98(14): e14891. doi: 10.1097/MD.0000000000014891 [28] Neuman BP, Eifler JB, Castanares M, et al. Real-time, near-infrared fluorescence imaging with an optimized dye/light source/camera combination for surgical guidance of prostate cancer[J]. Clin Cancer Res, 2015, 21(4): 771-80. doi: 10.1158/1078-0432.CCR-14-0891 [29] Tsai WK, Zettlitz KA, Tavaré R, et al. Dual-modality ImmunoPET/ fluorescence imaging of prostate cancer with an anti-PSCA cysminibody[J]. Theranostics, 2018, 8(21): 5903-14. doi: 10.7150/thno.27679 [30] Schottelius M, Wurzer A, Wissmiller K, et al. Synthesis and preclinical characterization of the PSMA-targeted hybrid tracer PSMA-I & F for nuclear and fluorescence imaging of prostate cancer[J]. J Nucl Med, 2019, 60(1): 71-8. doi: 10.2967/jnumed.118.212720 [31] 易小敏. 近红外荧光染剂在前列腺癌诊治中的应用研究[D]. 西安: 第四军医大学, 2015. [32] Smeenge M, Tranquart F, Mannaerts CK, et al. First-in-human ultrasound molecular imaging with a VEGFR2-specific ultrasound molecular contrast agent (BR55) in prostate cancer: a safety and feasibility pilot study[J]. Invest Radiol, 2017, 52(7): 419-27. doi: 10.1097/RLI.0000000000000362 [33] Perera RH, de Leon A, Wang XN, et al. Real time ultrasound molecular imaging of prostate cancer with PSMA-targeted nanobubbles[J]. Nanomed-Nanotechnol Biol Med, 2020, 28: 102213. doi: 10.1016/j.nano.2020.102213 [34] Wang YX, Lan MM, Shen DJ, et al. Targeted nanobubbles carrying indocyanine green for ultrasound, photoacoustic and fluorescence imaging of prostate cancer[J]. Int J Nanomedicine, 2020, 15: 4289-309. doi: 10.2147/IJN.S243548 [35] Kratochwil C, Giesel FL, Stefanova M, et al. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617[J]. J Nucl Med, 2016, 57(8): 1170-6. doi: 10.2967/jnumed.115.171397 [36] Yuan P, Song DK. MRI tracing non-invasive TiO2-based nanoparticles activated by ultrasound for multi-mechanism therapy of prostatic cancer[J]. Nanotechnology, 2018, 29(12): 125101. doi: 10.1088/1361-6528/aaa92a [37] Zheng Y, Hou G, Zhang G, et al. The near-infrared fluorescent dye IR-780 was coupled with cabazitaxel for castration-resistant prostate cancer imaging and therapy[J]. Invest New Drugs, 2020, 38(6): 1641-52. doi: 10.1007/s10637-020-00934-1 [38] Lan M, Zhu L, Wang Y, et al. Multifunctional nanobubbles carrying indocyanine green and paclitaxel for molecular imaging and the treatment of prostate cancer[J]. J Nanobiotechnology, 2020, 18(1): 121. doi: 10.1186/s12951-020-00650-1
点击查看大图
计量
- 文章访问数: 607
- HTML全文浏览量: 272
- PDF下载量: 31
- 被引次数: 0