Principle and research progress of quantitative magnetic resonance imaging
-
摘要: 定量磁共振成像技术近年来已广泛用于各个疾病的研究之中,最佳定量磁共振成像技术的应用将会对疾病的早期诊断和治疗产生更好的帮助。本文从成像原理出发对目前常见定量技术进行分类,介绍了化学交换饱和转移技术、化学位移同反相位技术、磁共振波谱、定量磁敏感图、弛豫率成像等技术的原理以及研究进展,最后对各个技术进行汇总分析。结果表明磁共振定量技术种类繁多,定量物质种类广泛。且部分定量磁共振成像技术之间存在交叉,一种技术可定量多种物质,多种技术可用于一种与疾病相关的物质定量研究。尽管目前有相关研究对定量同一物质的多种技术进行比较,但比较结果仍需进一步探索。本文的分析结果便于了解常见定量磁共振成像技术及其研究进展,可为临床诊疗研究提供可借鉴的依据。Abstract: Quantitative magnetic resonance imaging has been widely used in the study of various diseases in recent years. The best application of quantitative magnetic resonance imaging will be helpful for early diagnosis and treatment. In this paper, several common quantitative MRI imaging techniques are classified according to the imaging principle. The principles and research progress of chemical exchange saturation transfer, chemical shift imaging, magnetic resonance spectrum, quantitative susceptibility mapping, and relaxation rate mapping technique are introduced. Finally, this paper analyzed the research progress. The analysis results show that there are many kinds of quantitative magnetic resonance imaging techniques and quantitative substances. Moreover, some quantitative magnetic resonance imaging techniques are overlapping. One technology can quantify multiple substances, and many technologies can be used for quantitative research of a disease-related substance. Although relevant studies have been carried out to compare various techniques for quantifying the same substance, the comparison results still need to be further explored. This paper's analysis results are convenient to understand the standard quantitative magnetic resonance imaging technology and its research progress and provide a reference basis for clinical diagnosis and treatment research.
-
表 1 各类定量磁共振成像技术及临床应用一览表
Table 1. List of quantitative magnetic resonance imaging techniques and clinical applications
定量技术 成像原理 定量物质 临床应用 CEST 基于磁化传递成像 蛋白质、谷氨酸、酰胺、糖胺聚糖、外源性对比剂 脑肿瘤、神经退行性疾病、肌肉生理、软骨、pH成像、对比剂研发 MRS 基于化学位移成像 N-乙酰天门冬氨酸、肌酸、胆碱、脂质、谷氨酸、谷氨酰胺 肿瘤分期分级、神经退行性疾病、脂肪定量 QSM 基于磁敏感加权成像 顺磁性物质、反磁性物质 脑出血、动静脉畸形、神经退行性病变、组织钙化、铁沉积定量 IDEAL-IQ 基于化学位移成像 脂肪、铁沉积 脂肪含量测定、肝铁沉积 T1 mapping T1弛豫时间 心肌细胞水肿,间质纤维化程度 心脏成像 T2 mapping T2弛豫时间 胶原纤维、糖胺聚糖 心脏成像、骨关节、软骨组织 T2*/R2* mapping T2*/R2*弛豫时间 磁敏感物质(铁沉积) 心肌、肝脏、脑铁沉积定量 T1ρ mapping 自旋-晶格弛豫时间 胶原纤维、糖胺聚糖、大分子物质 骨关节、软骨组织、肝纤维化 CEST: Chemical exchange saturation transfer; QSM: Quantitative susceptibility mapping; MRS: Magnetic resonance spectrum; IDEAL: Iterative decomposition of water and fat with echo asymmetry and least-squares estimation. -
[1] Zhang Q, Zhang HM, Qi WQ, et al. 3.0T ¹H magnetic resonance spectroscopy for assessment of steatosis in patients with chronic hepatitis C[J]. World J Gastroenterol, 2015, 21(21): 6736-44. doi: 10.3748/wjg.v21.i21.6736 [2] Vinogradov E, Sherry AD, Lenkinski RE. CEST: from basic principles to applications, challenges and opportunities[J]. J Magn Reson, 2013, 229: 155-72. doi: 10.1016/j.jmr.2012.11.024 [3] Krikken E, Khlebnikov V, Zaiss M, et al. Amide chemical exchange saturation transfer at 7 T: a possible biomarker for detecting early response to neoadjuvant chemotherapy in breast cancer patients[J]. Breast Cancer Res, 2018, 20(1): 51. doi: 10.1186/s13058-018-0982-2 [4] Takayama Y, Nishie A, Sugimoto M, et al. Amide proton transfer (APT) magnetic resonance imaging of prostate cancer: comparison with Gleason scores[J]. Magn Reson Mater Phy, 2016, 29(4): 671-9. doi: 10.1007/s10334-016-0537-4 [5] Msayib Y, Harston GWJ, Sheerin F, et al. Partial volume correction for quantitative CEST imaging of acute ischemic stroke[J]. Magn Reson Med, 2019, 82(5): 1920-8. doi: 10.1002/mrm.27872 [6] Heo HY, Lee DH, Zhang Y, et al. Insight into the quantitative metrics of chemical exchange saturation transfer (CEST) imaging[J]. Magn Reson Med, 2017, 77(5): 1853-65. doi: 10.1002/mrm.26264 [7] Wang RR, Chen PD, Shen ZW, et al. Brain amide proton transfer imaging of rat with Alzheimer's disease using saturation with frequency alternating RF irradiation method[J]. Front Aging Neurosci, 2019, 11: 217. doi: 10.3389/fnagi.2019.00217 [8] Schüre JR, Shrestha M, Breuer S, et al. The pH sensitivity of APTCEST using phosphorus spectroscopy as a reference method[J]. NMR Biomed, 2019, 32(11): e4125. [9] Pankowska A, Kochalska K, Łazorczyk A, et al. Chemical exchange saturation transfer (CEST) as a new method of signal obtainment in magnetic resonance molecular imaging in clinical and research practice[J]. Pol J Radiol, 2019, 84: e147-52. doi: 10.5114/pjr.2019.84242 [10] 张中伟.磁共振成像中的化学位移效应(二[) J].影像诊断与介入放射学, 2017, 26(3): 255-60. doi: 10.3969/j.issn.1005-8001.2017.03.020 [11] Reeder SB, Pineda AR, Wen Z, et al. Iterative decomposition of water and fat with echo asymmetry and least- squares estimation (IDEAL): Application with fast spin-echo imaging[J]. Magn Reson Med, 2005, 54(3): 636-44. doi: 10.1002/mrm.20624 [12] 展影, 安颖颖, 屈瑾, 等. mDixon Quant脂肪定量技术对强直性脊柱炎骶髂关节炎的应用研究[J].国际医学放射学杂志, 2018, 41(6): 672-6. [13] Eskreis-Winkler S, Corrias G, Monti S, et al. IDEAL-IQ in an oncologic population: meeting the challenge of concomitant liver fat and liver iron[J]. Cancer Imaging, 2018, 18(1): 51. doi: 10.1186/s40644-018-0167-3 [14] 常红花, 李杰, 王亚魁, 等. IDEAL-IQ技术定量测量健康青年女性颈部锁骨上脂肪[J].中国医学影像技术, 2018, 34(5): 760-4. [15] Ecénarro-Montiel A, Baleato-González S, Santiago-Pérez MI, et al. Using the modified Dixon technique to evaluate incidental adrenal lesions on 3T MRI[J]. Radiologia, 2018, 60(6): 485-92. doi: 10.1016/j.rx.2018.06.001 [16] Ren C, Zhu Q, Yuan HS. Mono-exponential and bi- exponential model-based diffusion-weighted MR imaging and IDEAL-IQ sequence for quantitative evaluation of sacroiliitis in patients with ankylosing spondylitis[J]. Clin Rheumatol, 2018, 37(11): 3069-76. doi: 10.1007/s10067-018-4321-x [17] Zhang Y, Zhou Z, Wang C, et al. Reliability of measuring the fat content of the lumbar vertebral marrow and paraspinal muscles using MRI mDIXON-Quant sequence[J]. Diagn Interv Radiol, 2018, 24(5): 302-7. doi: 10.5152/dir.2018.17323 [18] 刘俊, 李建军, 高峰, 等.磁共振波谱技术的临床应用进展[J].中国康复理论与实践, 2019, 25(2): 201-4. doi: 10.3969/j.issn.1006-9771.2019.02.013 [19] Dhamala E, Abdelkefi I, Nguyen M, et al. Validation of in vivo MRS measures of metabolite concentrations in the human brain[J]. NMR Biomed, 2019, 32(3): e4058. doi: 10.1002/nbm.4058 [20] Klohs J, Deistung A, Ielacqua GD, et al. Quantitative assessment of microvasculopathy in arcAβ mice with USPIO-enhanced gradient echo MRI[J]. J Cereb Blood Flow Metab, 2016, 36(9): 1614-24. doi: 10.1177/0271678X15621500 [21] Yan FH, He NY, Lin HM, et al. Iron deposition quantification: Applications in the brain and liver[J]. J Magn Reson Imaging, 2018, 48(2): 301-17. doi: 10.1002/jmri.26161 [22] Kim HG, Park S, Rhee HY, et al. Quantitative susceptibility mapping to evaluate the early stage of Alzheimer's disease[J]. Neuroimage Clin, 2017, 16: 429-38. doi: 10.1016/j.nicl.2017.08.019 [23] Vinayagamani S, Sheelakumari R, Sabarish S, et al. Quantitative susceptibility mapping: technical considerations and clinical applications in neuroimaging[J]. J Magn Reson Imaging, 2020. DOI: 10.1002/jmri.27058. [24] Sharma SD, Fischer R, Schoennagel BP, et al. MRI-based quantitative susceptibility mapping (QSM) and R2* mapping of liver iron overload: Comparison with SQUID-based biomagnetic liver susceptometry[J]. Magn Reson Med, 2017, 78(1): 264-70. doi: 10.1002/mrm.26358 [25] Lin HM, Wei HJ, He NY, et al. Quantitative susceptibility mapping in combination with water-fat separation for simultaneous liver iron and fat fraction quantification[J]. Eur Radiol, 2018, 28(8): 3494-504. doi: 10.1007/s00330-017-5263-4 [26] Sato R, Shirai T, Soutome Y, et al. Quantitative susceptibility mapping of prostate with separate calculations for water and fat regions for reducing shading artifacts[J]. Magn Reson Imaging, 2020, 66: 22-9. doi: 10.1016/j.mri.2019.11.006 [27] Chow K, Yang Y, Shaw P, et al. Robust free-breathing SASHA T1 mapping with high- contrast image registration[J]. J Cardiovasc Magn Reson, 2016, 18(1): 47. doi: 10.1186/s12968-016-0267-9 [28] Shaw JL, Yang Q, Zhou ZW, et al. Free-breathing, non-ECG, continuous myocardial T1 mapping with cardiovascular magnetic resonance multitasking[J]. Magn Reson Med, 2019, 81(4): 2450-63. doi: 10.1002/mrm.27574 [29] Mozes FE, Tunnicliffe EM, Moolla A, et al. Mapping tissue water T1 in the liver using the MOLLI T1 method in the presence of fat, iron and B0 inhomogeneity[J]. NMR Biomed, 2019, 32(2): e4030. doi: 10.1002/nbm.4030 [30] Tirkes T, Zhao XD, Lin C, et al. Evaluation of variable flip angle, MOLLI, SASHA, and IR-SNAPSHOT pulse sequences for T1 relaxometry and extracellular volume imaging of the pancreas and liver[J]. MAGMA, 2019, 32(5): 559-66. doi: 10.1007/s10334-019-00762-2 [31] Link T M, Neumann J, Li X. Prestructural cartilage assessment using MRI[J]. J Magn Reson Imaging, 2017, 45(4): 949-65. doi: 10.1002/jmri.25554 [32] Song CL, Meng XF, Liu YY, et al. Susceptibility-weighted imaging for metabolic pathway mapping of low-dosage nanoparticles in organisms[J]. Biomaterials, 2020, 230: 119631. doi: 10.1016/j.biomaterials.2019.119631 [33] 关基景, 冯衍秋.脑铁沉积的MR定量分析方法:定量磁化率成像与横向弛豫率成像比较[J].南方医科大学学报, 2018, 38(3): 305-11. doi: 10.3969/j.issn.1673-4254.2018.03.10 [34] Han XR, Hong GJ, Chen LL, et al. T1 ρ and T2 mapping for the determination of articular cartilage denaturalization with osteonecrosis of the femoral head: a prospective controlled trial[J]. J Magn Reson Imaging, 2019, 49(3): 760-7. doi: 10.1002/jmri.26267 [35] Johnson CP, Follmer RL, Oguz I, et al. Brain abnormalities in bipolar disorder detected by quantitative T1ρ mapping[J]. Mol Psychiatry, 2015, 20(2): 201-6. doi: 10.1038/mp.2014.157 [36] Stoffers RH, Madden M, Shahid M, et al. Erratum to: Assessment of myocardial injury after reperfused infarction by T1ρ cardiovascular magnetic resonance[J]. J Cardiovasc Magn Reson, 2017, 19(1): 42. doi: 10.1186/s12968-017-0354-6 [37] Xie SS, Li Q, Cheng Y, et al. Impact of liver fibrosis and fatty liver on T1rho measurements: a prospective study[J]. Korean J Radiol, 2017, 18(6): 898-905. doi: 10.3348/kjr.2017.18.6.898 [38] Okuaki T, Takayama Y, Nishie A, et al. T1ρ mapping improvement using stretched- type adiabatic locking pulses for assessment of human liver function at 3T[J]. Magn Reson Imaging, 2017, 40: 17- 23. doi: 10.1016/j.mri.2017.03.006 [39] 黎继昕, 苏赟, 赖炳佳, 等.对比MS BLOCK T1rho、MS HS8 T1rho及3D BLOCK T1rho序列肝脏MR图像质量及T1rho值[J].中国医学影像技术, 2019, 35(6): 920-4.
点击查看大图
表(1)
计量
- 文章访问数: 1727
- HTML全文浏览量: 734
- PDF下载量: 157
- 被引次数: 0