留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

新型含钆磁共振对比剂在小鼠体内的成像研究

刘杰 朱灵梅 张文飞

刘杰, 朱灵梅, 张文飞. 新型含钆磁共振对比剂在小鼠体内的成像研究[J]. 分子影像学杂志, 2020, 43(3): 439-443. doi: 10.12122/j.issn.1674-4500.2020.03.14
引用本文: 刘杰, 朱灵梅, 张文飞. 新型含钆磁共振对比剂在小鼠体内的成像研究[J]. 分子影像学杂志, 2020, 43(3): 439-443. doi: 10.12122/j.issn.1674-4500.2020.03.14
Jie LIU, Lingmei ZHU, Wenfei ZHANG. An animal imaging study of a novel magnetic resonance contrast agent[J]. Journal of Molecular Imaging, 2020, 43(3): 439-443. doi: 10.12122/j.issn.1674-4500.2020.03.14
Citation: Jie LIU, Lingmei ZHU, Wenfei ZHANG. An animal imaging study of a novel magnetic resonance contrast agent[J]. Journal of Molecular Imaging, 2020, 43(3): 439-443. doi: 10.12122/j.issn.1674-4500.2020.03.14

新型含钆磁共振对比剂在小鼠体内的成像研究

doi: 10.12122/j.issn.1674-4500.2020.03.14
详细信息
    作者简介:

    刘杰,主治医师,E-mail: 270085038@qq.com

    通讯作者:

    朱灵梅,硕士,E-mail: 373321296@qq.com

An animal imaging study of a novel magnetic resonance contrast agent

  • 摘要: 目的 研究一种新型含钆磁共振对比剂(Gd-PPF-S-CAs)在小鼠体内正常器官的成像研究。 方法 首先将Gd-PPF-S-CAs与小分子磁共振对比剂(DTPA-Gd)在体外弛豫效能进行对比;其次选取正常Balb/C小鼠10只,随机分为两组,一组注射Gd-PPF-S-CAs,一组注射临床用DTPA-Gd,分别进行小鼠的肝、肾、膀胱扫描,将Gd-PPF-S-CAs组在体内增强效果、增强幅度以及强化持续时间3个方面与临床DTPA-Gd进行对比。 结果 体外弛豫效能结果显示,实验组Gd-PPF-S-CAs弛豫率为15.43 mmol-1s-1,是临床DTPA-Gd弛豫率(3.53 mmol-1s-1)的5倍;通过对小鼠肝、肾、膀胱的增强效果、增强幅度以及强化持续时间进行分析,Gd-PPF-S-CAs较临床用DTPA-Gd在小鼠肝、肾、膀胱有着更为明显的增强效果、较高的增强幅度以及长时间的强化持续窗口。 结论 Gd-PPF-S-CAs在体外有着较高的弛豫效能;在小鼠体内正常器官有着明显的增强效果和长效的强化持续时间,能够有效的解决小分子临床DTPA-Gd的增强幅度较低、组织对比度不高和成像窗口时间较短的不足;同时,Gd-PPF-S-CAs具有酶降解特性,能够在体内快速代谢,有效地解决了Gd3+对比剂的潜在毒性问题,具有良好的临床应用前景。

     

  • 图  1  3.0 T磁共振测定纵向弛豫率

    A: T1加权图像; B: r1值.

    Figure  1.  Measurement of longitudinal relaxivity by 3.0 T MR.

    图  2  注射Gd-PPF-S-CAs后主要器官(肝、肾和膀胱)的MRI

    A: T1加权图像; B:相对信号增强比值.

    Figure  2.  MRI of major organs (liver, kidney and bladder) after Gd-PPF-S-CAs injection.

    图  3  MRI of major organs (liver, kidney and bladder) after DTPA-Gd injection.

    A: T1加权图像; B:相对信号增强比值.

    图  4  注射生理盐水和Gd-PPF-S-CAs 24 h后小鼠主要器官(心、肝、脾、肺、肾)的组织切片分析

    Figure  4.  Tissue section analysis of major organs (heart, liver, spleen, lung and kidney) of mice 24 hours after injection of saline and Gd-PPF-S-CAS (HE staining, ×10).

  • [1] Lin SP, Brown JJ. MR contrast agents: physical and pharmacologic basics[J]. J Magn Reson Imaging, 2007, 25(5): 884-99. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025696577/
    [2] Corr SA, Byrne SJ, Tekoriute R, et al. Linear assemblies of magnetic nanoparticles as MRI contrast agents[J]. J Am Chem Soc, 2008, 130(13): 4214-5. doi: 10.1021/ja710172z
    [3] Debroye E, Parac-Vogt TN. Towards polymetallic lanthanide complexes as dual contrast agents for magnetic resonance and optical imaging[J]. Chem Soc Rev, 2014, 43(23): 8178-92. doi: 10.1039/C4CS00201F
    [4] Tang JB, Sheng YQ, Hu HJ, et al. Macromolecular MRI contrast agents: Structures, properties and applications[J]. Prog Polym Sci, 2013, 38(3/4): 462-502. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229009308/
    [5] Zheng XY, Li LD, Sun LD, et al. Lanthanide nanoparticles: promising candidates for magnetic resonance imaging contrast enhancement[J]. Handb Phys Chem Rare Earths, 2016, 50: 301-35. doi: 10.1016/bs.hpcre.2016.05.001
    [6] Lu KD, Aung T, Guo NN, et al. Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications[J]. Adv Mater Weinheim, 2018, 30(37): e1707634-8. doi: 10.1002/adma.201707634
    [7] Tang ZH, He CL, Tian HY, et al. Polymeric nanostructured materials for biomedical applications[J]. Prog Polym Sci, 2016. DOI: 10.1016/j.progpolymsci.2016.05.005.
    [8] Li YW, Huang YR, Wang Z, et al. Polycatechol nanoparticle MRI contrast agents[J]. Small, 2016, 12(5): 668-77. doi: 10.1002/smll.201502754
    [9] Caravan P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents[J]. Chem Soc Rev, 2006, 35(6): 512-23. doi: 10.1039/b510982p
    [10] Duncan R. The dawning era of polymer therapeutics[J]. Nat Rev Drug Discov, 2003, 2(5): 347-60. doi: 10.1038-nrd1088/
    [11] Hoshyar N, Gray S, Han HB, et al. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction[J]. Nanomedicine (Lond), 2016, 11(6): 673-92. http://europepmc.org/abstract/MED/27003448
    [12] Duncan R, Izzo L. Dendrimer biocompatibility and toxicity[J]. Adv Drug Deliv Rev, 2005, 57(15): 2215-37. doi: 10.1016/j.addr.2005.09.019
    [13] Hu QY, Katti PS, Gu Z. Enzyme-responsive nanomaterials for controlled drug delivery[J]. Nanoscale, 2014, 6(21): 12273-86. doi: 10.1039/C4NR04249B
    [14] Wang YL, Ye FR, Jeong EK, et al. Noninvasive visualization of pharmacokinetics, biodistribution and tumor targeting of poly[N-(2-hydroxypropyl)methacrylamide]in mice using contrast enhanced MRI[J]. Pharm Res, 2007, 24(6): 1208-16. doi: 10.1007/s11095-007-9252-1
    [15] Xu RZ, Wang YL, Wang XL, et al. In vivo evaluation of a PAMAM-cystamine-(Gd-DO3A) conjugate as a biodegradable macromolecular MRI contrast agent[J]. Exp Biol Med (Maywood), 2007, 232(8): 1081-9. doi: 10.3181/0702-RM-33
    [16] Xu RZ, Kaneshiro TL, Jeong EK, et al. Synthesis and evaluation of nanoglobule-cystamine-(Gd-DO3A), a biodegradable nanosized magnetic resonance contrast agent for dynamic contrast-enhanced magnetic resonance urography[J]. Int J Nanomedicine, 2010, 5: 707-13. doi: 10.2147/IJN.S12224
    [17] Soppimath KS, Aminabhavi TM, Kulkarni AR, et al. Biodegradable polymeric nanoparticles as drug delivery devices[J]. J Control Release, 2001, 70(1/2):1-20. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_f60daba3aa54b41252e2de1d775d15fe
    [18] Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems[J]. Colloids Surfaces B: Biointerfaces, 2010, 75(1):1-18. doi: 10.1016/j.colsurfb.2009.09.001
    [19] Ye F, Barrefelt A, Asem H, et al. Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging[J]. Biomaterials, 2014, 35(12): 3885-94. doi: 10.1016/j.biomaterials.2014.01.041
    [20] Dong JJ, Liu M, Zhang KC, et al. Biocleavable oligolysine-grafted poly(disulfide amine)s as magnetic resonance imaging probes[J]. Bioconjugate Chem, 2016, 27(1):151-8. doi: 10.1021/acs.bioconjchem.5b00569
    [21] Ishiguchi DT, Takahashi S. Safety of gadoterate meglumine (Gd-DOTA) as a contrast agent for magnetic resonance imaging[J]. Drugs R & D, 2010, 10(3): 133-45. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3586093
    [22] Thomsen HS, Morcos SK, Torsten A, et al. Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines[J]. Eur Radiol, 2013, 23(2): 307-18. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228836058/
    [23] de Campos FF, Enzweiler J. Anthropogenic gadolinium anomalies and rare earth elements in the water of Atibaia River and Anhumas Creek, Southeast Brazil[J]. Environ Monit Assess, 2016, 188(5): 281-90. doi: 10.1007/s10661-016-5282-7
    [24] Nardone B, Saddleton E, Laumann AE, et al. Pediatric nephrogenic systemic fibrosis is rarely reported: a RADAR report[J]. Pediatr Radiol, 2014, 44(2): 173-180. doi: 10.1007/s00247-013-2795-x
    [25] Nguyen HV, Chen QX, Paletta JT, et al. Nitroxide-based macromolecular contrast agents with unprecedented transverse relaxivity and stability for magnetic resonance imaging of tumors[J]. ACS Cent Sci, 2017, 3(7): 800-11. doi: 10.1021/acscentsci.7b00253
  • 加载中
图(4)
计量
  • 文章访问数:  982
  • HTML全文浏览量:  358
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-16
  • 刊出日期:  2020-07-20

目录

    /

    返回文章
    返回