[1] |
Lin SP, Brown JJ. MR contrast agents: physical and pharmacologic basics[J]. J Magn Reson Imaging, 2007, 25(5): 884-99. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025696577/
|
[2] |
Corr SA, Byrne SJ, Tekoriute R, et al. Linear assemblies of magnetic nanoparticles as MRI contrast agents[J]. J Am Chem Soc, 2008, 130(13): 4214-5. doi: 10.1021/ja710172z
|
[3] |
Debroye E, Parac-Vogt TN. Towards polymetallic lanthanide complexes as dual contrast agents for magnetic resonance and optical imaging[J]. Chem Soc Rev, 2014, 43(23): 8178-92. doi: 10.1039/C4CS00201F
|
[4] |
Tang JB, Sheng YQ, Hu HJ, et al. Macromolecular MRI contrast agents: Structures, properties and applications[J]. Prog Polym Sci, 2013, 38(3/4): 462-502. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229009308/
|
[5] |
Zheng XY, Li LD, Sun LD, et al. Lanthanide nanoparticles: promising candidates for magnetic resonance imaging contrast enhancement[J]. Handb Phys Chem Rare Earths, 2016, 50: 301-35. doi: 10.1016/bs.hpcre.2016.05.001
|
[6] |
Lu KD, Aung T, Guo NN, et al. Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications[J]. Adv Mater Weinheim, 2018, 30(37): e1707634-8. doi: 10.1002/adma.201707634
|
[7] |
Tang ZH, He CL, Tian HY, et al. Polymeric nanostructured materials for biomedical applications[J]. Prog Polym Sci, 2016. DOI: 10.1016/j.progpolymsci.2016.05.005.
|
[8] |
Li YW, Huang YR, Wang Z, et al. Polycatechol nanoparticle MRI contrast agents[J]. Small, 2016, 12(5): 668-77. doi: 10.1002/smll.201502754
|
[9] |
Caravan P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents[J]. Chem Soc Rev, 2006, 35(6): 512-23. doi: 10.1039/b510982p
|
[10] |
Duncan R. The dawning era of polymer therapeutics[J]. Nat Rev Drug Discov, 2003, 2(5): 347-60. doi: 10.1038-nrd1088/
|
[11] |
Hoshyar N, Gray S, Han HB, et al. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction[J]. Nanomedicine (Lond), 2016, 11(6): 673-92. http://europepmc.org/abstract/MED/27003448
|
[12] |
Duncan R, Izzo L. Dendrimer biocompatibility and toxicity[J]. Adv Drug Deliv Rev, 2005, 57(15): 2215-37. doi: 10.1016/j.addr.2005.09.019
|
[13] |
Hu QY, Katti PS, Gu Z. Enzyme-responsive nanomaterials for controlled drug delivery[J]. Nanoscale, 2014, 6(21): 12273-86. doi: 10.1039/C4NR04249B
|
[14] |
Wang YL, Ye FR, Jeong EK, et al. Noninvasive visualization of pharmacokinetics, biodistribution and tumor targeting of poly[N-(2-hydroxypropyl)methacrylamide]in mice using contrast enhanced MRI[J]. Pharm Res, 2007, 24(6): 1208-16. doi: 10.1007/s11095-007-9252-1
|
[15] |
Xu RZ, Wang YL, Wang XL, et al. In vivo evaluation of a PAMAM-cystamine-(Gd-DO3A) conjugate as a biodegradable macromolecular MRI contrast agent[J]. Exp Biol Med (Maywood), 2007, 232(8): 1081-9. doi: 10.3181/0702-RM-33
|
[16] |
Xu RZ, Kaneshiro TL, Jeong EK, et al. Synthesis and evaluation of nanoglobule-cystamine-(Gd-DO3A), a biodegradable nanosized magnetic resonance contrast agent for dynamic contrast-enhanced magnetic resonance urography[J]. Int J Nanomedicine, 2010, 5: 707-13. doi: 10.2147/IJN.S12224
|
[17] |
Soppimath KS, Aminabhavi TM, Kulkarni AR, et al. Biodegradable polymeric nanoparticles as drug delivery devices[J]. J Control Release, 2001, 70(1/2):1-20. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_f60daba3aa54b41252e2de1d775d15fe
|
[18] |
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems[J]. Colloids Surfaces B: Biointerfaces, 2010, 75(1):1-18. doi: 10.1016/j.colsurfb.2009.09.001
|
[19] |
Ye F, Barrefelt A, Asem H, et al. Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging[J]. Biomaterials, 2014, 35(12): 3885-94. doi: 10.1016/j.biomaterials.2014.01.041
|
[20] |
Dong JJ, Liu M, Zhang KC, et al. Biocleavable oligolysine-grafted poly(disulfide amine)s as magnetic resonance imaging probes[J]. Bioconjugate Chem, 2016, 27(1):151-8. doi: 10.1021/acs.bioconjchem.5b00569
|
[21] |
Ishiguchi DT, Takahashi S. Safety of gadoterate meglumine (Gd-DOTA) as a contrast agent for magnetic resonance imaging[J]. Drugs R & D, 2010, 10(3): 133-45. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3586093
|
[22] |
Thomsen HS, Morcos SK, Torsten A, et al. Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines[J]. Eur Radiol, 2013, 23(2): 307-18. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228836058/
|
[23] |
de Campos FF, Enzweiler J. Anthropogenic gadolinium anomalies and rare earth elements in the water of Atibaia River and Anhumas Creek, Southeast Brazil[J]. Environ Monit Assess, 2016, 188(5): 281-90. doi: 10.1007/s10661-016-5282-7
|
[24] |
Nardone B, Saddleton E, Laumann AE, et al. Pediatric nephrogenic systemic fibrosis is rarely reported: a RADAR report[J]. Pediatr Radiol, 2014, 44(2): 173-180. doi: 10.1007/s00247-013-2795-x
|
[25] |
Nguyen HV, Chen QX, Paletta JT, et al. Nitroxide-based macromolecular contrast agents with unprecedented transverse relaxivity and stability for magnetic resonance imaging of tumors[J]. ACS Cent Sci, 2017, 3(7): 800-11. doi: 10.1021/acscentsci.7b00253
|