留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

基于深度学习的人工智能在肺结节诊断领域的进展

张俊 侯聪 刘新疆

张俊, 侯聪, 刘新疆. 基于深度学习的人工智能在肺结节诊断领域的进展[J]. 分子影像学杂志, 2020, 43(3): 365-368. doi: 10.12122/j.issn.1674-4500.2020.03.01
引用本文: 张俊, 侯聪, 刘新疆. 基于深度学习的人工智能在肺结节诊断领域的进展[J]. 分子影像学杂志, 2020, 43(3): 365-368. doi: 10.12122/j.issn.1674-4500.2020.03.01
Jun ZHANG, Cong HOU, Xinjiang LIU. Research progress of artificial intelligence based on deep learning in the field of pulmonary nodules[J]. Journal of Molecular Imaging, 2020, 43(3): 365-368. doi: 10.12122/j.issn.1674-4500.2020.03.01
Citation: Jun ZHANG, Cong HOU, Xinjiang LIU. Research progress of artificial intelligence based on deep learning in the field of pulmonary nodules[J]. Journal of Molecular Imaging, 2020, 43(3): 365-368. doi: 10.12122/j.issn.1674-4500.2020.03.01

基于深度学习的人工智能在肺结节诊断领域的进展

doi: 10.12122/j.issn.1674-4500.2020.03.01
基金项目: 

山东省自然科学基金计划 ZR2016HL43

山东省医药卫生科技发展计划 2015WS0479

详细信息
    作者简介:

    张俊,在读硕士研究生,住院医师,E-mail: zj20120521@126.com

    通讯作者:

    刘新疆,博士,主任医师,E-mail: lxj6513@163.com

Research progress of artificial intelligence based on deep learning in the field of pulmonary nodules

  • 摘要: 肺癌是死亡率最高的恶性肿瘤,肺结节的早期检测是降低肺癌死亡率的关键。基于深度学习的人工智能技术可通过自我学习,不断提高肺结节检测和诊断的准确率,是实现计算机辅助诊断的重要手段。本文介绍了人工智能、机器学习、深度学习的概念及三者间的关系,阐述了4种常见的深度学习模型:卷积神经网络、海量训练人工神经网络、自编码器和深度信念网络。卷积神经网络是最常用的深度学习模型,主要包括二维卷积神经网络、三维卷积神经网络和多流、多尺度的卷积神经网络,其中的多流、多尺度的卷积神经网络更有利于肺结节的分类;海量训练人工神经网络在有限的肺结节训练样本中具有优势;自编码器可以在较低维空间下对肺结节进行检测;深度信念网络是一种生成模式,与极限学习机结合可提高肺结节的诊断率。另外,本研究分析了目前人工智能存在的问题:标记图像过少、可解释性和可控制性不足、存在伦理和法律问题。总之,基于深度学习的人工智能不仅改变了影像学,也改变了所有其他的医学领域,具有广阔的应用前景。

     

  • [1] Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and motality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5): E359-86. doi: 10.1002/ijc.29210
    [2] 李欣菱, 郭芳芳, 周振, 等.基于深度学习的人工智能胸部CT肺结节检测效能评估[J].中国肺癌杂志, 2019, 22(6): 336-40. http://d.old.wanfangdata.com.cn/Periodical/zgfazz201906002
    [3] Hua KL, Hsu CH, Hidayati SC, et al. Computer-aided classificationof lung nodules on computed tomography images via deep learning technique[J]. Onco Targets Ther, 2015, 8: 2015-22. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531007/
    [4] Liu S, Xie YT, Jirapatnakul A, et al. Pulmonary nodule classification in lung cancer screening with three-dimensional convolutional neural networks [J]. J Med Imaging (Bellingham), 2017, 4(4): 308-16. http://www.ncbi.nlm.nih.gov/pubmed/29181428
    [5] Ciompi F, Chung K, van Riel SJ, et al. Corrigendum: Towards automatic pulmonary nodule management in lung cancer screening with deep learning[J]. Sci Rep, 2017, 7: 46878-85. doi: 10.1038/srep46878
    [6] Shen W, Zhou M, Yang F, et al. Multi-scale convolutional neural networks for lung nodule classification[J]. Inf Process Med Imaging, 2015, 24: 588-99. doi: 10.1007%2F978-3-319-19992-4_46
    [7] Suzuki K, DoiK. How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT[J]. Acad ·Radiol, 2005, 12(10): 1333-41. doi: 10.1016/j.acra.2005.06.017
    [8] Nima T, Kenji S. Comparing two classes of end-to-end machinelearning models in lung nodule detection and classification: MTANNs vs. CNNs [J]. Pattern Recogn, 2017, 63: 476-86. doi: 10.1016/j.patcog.2016.09.029
    [9] Luca S, Mainak B, Venkatanareshbabu K, et al. The present and future of deep learning in radiology[J]. Eur J Radiol, 2019, 114: 14-24. doi: 10.1016/j.ejrad.2019.02.038
    [10] Bengio Y, Lamblin P, Popovici D, et al. Greedy layer-wise training of deep networks[C]. Canada: Proceedings of the 19th International Conference on Neural Information Processing System, 2006: 153-60.
    [11] Vincent P, Larochelle H, Bengio Y, et al. Extracting and composing robust features with denoising autoencoders [C]. New York: Proceedings of the 25th International Conference on Machine Learning, 2008: 1096-103.
    [12] Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets [J]. Neural Comput, 2006, 18(7): 1527-54. doi: 10.1162/neco.2006.18.7.1527
    [13] Kumar D, Wong A, Clausi DA. Lung nodule classification using deep features in CT images[C]//2015 12th Conference on Computer and Robot Vision, 3-5 June 2015, Halifax, NS, Canada. IEEE, 2015: 133-8.
    [14] Mao KM, Tang RJ, Wang XQ, et al. Feature representation using deep autoencoder for lung nodule image classification[J]. Complexity, 2018, 128 (13): 1-11. doi: 10.1155/2018/3078374
    [15] 赵鑫, 强彦, 强梓林, 等.基于局部感受野和半监督深度自编码的肺结节检测方法[J].科学技术与工程, 2017, 17(33): 125-30. doi: 10.3969/j.issn.1671-1815.2017.33.018
    [16] Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313(5786): 504-7. doi: 10.1126-science.1127647/
    [17] Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis [J]. Med Image Anal, 2017, 42: 60-88. doi: 10.1016/j.media.2017.07.005
    [18] 高琰, 陈白帆, 晁绪耀, 等.基于对比散度-受限玻尔兹曼机深度学习的产品评论情感分析[J].计算机应用, 2016, 36(4): 1045-9. http://d.old.wanfangdata.com.cn/Periodical/jsjyy201604031
    [19] 张婷, 赵文婷, 赵涓涓, 等.改进的深度信念网络肺结节良恶性分类[J].计算机工程与设计, 2018, 39(9): 2707-13, 2729. http://d.old.wanfangdata.com.cn/Periodical/jsjgcysj201809002
    [20] Hussein S, Cao K, Song Q, et al. Risk stratification of lung nodules using 3d CNN-based multi-task learning[C]//International Conference on Information Processing in Medical Imaging. Boone: IPMI, 2017: 249-60.
    [21] Zamir AR, Sax A, Shen W, et al. Taskonomy: Disentangling task transfer learning[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3712-22.
    [22] Zhang C, Sun X, Dang K, et al. Toward an expert level of lung cancer detection and classification using a deep convolutional neural network[J]. Oncologist, 2019, 24(9): 1159-65. https://pubmed.ncbi.nlm.nih.gov/30996009/
    [23] Sala E, Mema E, Himoto Y, et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging[J]. Clin Radiol, 2017, 72(1): 3-10. https://www.ncbi.nlm.nih.gov/pubmed/27742105
  • 加载中
计量
  • 文章访问数:  1488
  • HTML全文浏览量:  544
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-06
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回