x
Volume 38 Issue 4
May  2018
Turn off MathJax
Article Contents
Zhiwei CHEN, Yuechun LI. The review about the research methods of thalamic lesions and cognitive impairment[J]. Journal of Molecular Imaging, 2015, 38(4): 400-402. doi: 10.3969/j.issn.1674-4500.2015.04.29
Citation: Zhiwei CHEN, Yuechun LI. The review about the research methods of thalamic lesions and cognitive impairment[J]. Journal of Molecular Imaging, 2015, 38(4): 400-402. doi: 10.3969/j.issn.1674-4500.2015.04.29

The review about the research methods of thalamic lesions and cognitive impairment

doi: 10.3969/j.issn.1674-4500.2015.04.29
  • Received Date: 2015-06-18
  • Publish Date: 2015-12-01
  • Cognitive impairment after thalamic lesions is the current clinical neuropsychological research hot spot, the cognitive change patterns caused by different parts of the thalamic lesions are still being continuously explored and debated. This article reviews the research progress of the cognitive impairment after thalamic lesions mainly around functional imaging. At the same time, deeply analyzes the research method and process of domestic related literature, to conclude the reason of existing research results debated at home and abroad.

     

  • loading
  • [1]
    Prevosto V, Sommer MA. Cognitive control of movement via the cerebellar-recipient thalamus[J]. Front Syst Neurosci, 2013, 7(7): 56.
    [2]
    Bočková M, Chládek J, Jurák P, et al. Complex motor-cognitive factors processed in the anterior nucleus of the thalamus: an intracerebral recording study[J]. Brain Topogr, 2015, 28(2): 269-78. doi: 10.1007/s10548-014-0373-7
    [3]
    Jakab A, Blanc R, Berényi EL. Mapping changes of in vivo connectivity patterns in the human mediodorsal thalamus: correlations with higher cognitive and executive functions[J]. Brain Imaging Behav, 2012, 6(3): 472-83. doi: 10.1007/s11682-012-9172-5
    [4]
    Copeland CS, Neale SA, Salt TE. Neuronal activity patterns in the mediodorsal thalamus and related cognitive circuits are modulated by metabotropic glutamate receptors[J]. Neuropharmacology, 2015, 92(7): 16-24.
    [5]
    Baxter MG. Mediodorsal thalamus and cognition in non-human primates[J]. Front Syst Neurosci, 2013, 7(8): 38.
    [6]
    Alkonyi B, Chugani HT, Behen M, et al. The role of the thalamus in neuro-cognitive dysfunction in early unilateral hemispheric injury: a multimodality imaging study of children with Sturge-Weber syndrome[J]. Eur J Paediatr Neurol, 2010, 14(5): 425-33. doi: 10.1016/j.ejpn.2010.03.012
    [7]
    Hauser T, Gerigk L, Giesel F, et al. Mr spectroscopy in dementia[J]. Radiologe, 2010, 50(9): 791-8. doi: 10.1007/s00117-009-1947-3
    [8]
    Serra L, Cercignani M, Carlesimo GA, et al. Connectivity-based parcellation of the thalamus explains specific cognitive and behavioural symptoms in patients with bilateral thalamic infarct[J]. PLoS One, 2014, 8(6): e64578.
    [9]
    Liu Y, Yu C, Zhang X, et al. Impaired long distance functional connectivity and weighted network architecture in Alzheimer's disease[J]. Cereb Cortex, 2014, 24(6): 1422-35. doi: 10.1093/cercor/bhs410
    [10]
    Zhang D, Snyder AZ, Shimony JS, et al. Noninvasive functional and structural connectivity mapping of the human thalamocortical system[J]. Cereb Cortex, 2010, 20(5): 1187-94. doi: 10.1093/cercor/bhp182
    [11]
    Zhou B, Liu Y, Zhang Z, et al. Impaired functional connectivity of the thalamus in Alzheimer's disease and mild cognitive impairment: a resting-state fMRI study[J]. Curr Alzheimer Res, 2013, 10(7): 754-66. doi: 10.2174/15672050113109990146
    [12]
    Brownsett SL, Wise RJ. The contribution of the parietal lobes to speaking and writing[J]. Cereb Cortex, 2010, 20(3): 517-23. doi: 10.1093/cercor/bhp120
    [13]
    Hutchinson JB, Uncapher MR, Weiner KS, et al. Functional heterogeneity in posterior parietal cortex across attention and episodic memory retrieval [J]. Cereb Cortex, 2014, 24(1): 49-66. doi: 10.1093/cercor/bhs278
    [14]
    Cash DM, Ridgway GR, Liang Y, et al. The pattern of atrophy in familial Alzheimer disease: volumetric MRI results from the DIAN study[J]. Neurology, 2013, 81(16): 1425-33. doi: 10.1212/WNL.0b013e3182a841c6
    [15]
    Han Y, Wang J, Zhao Z, et al. Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study[J]. Neuroimage, 2011, 55 (1): 287-95. doi: 10.1016/j.neuroimage.2010.11.059
    [16]
    Han SD, Arfanakis K, Fleischman DA, et al. Functional connectivity variations in mild cognitive impairment: associations with cognitive function[J]. J Int Neuropsychol Soc, 2012, 18(1): 39-48. doi: 10.1017/S1355617711001299
    [17]
    Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging[J]. Neuron, 2013, 80(3): 807-15. doi: 10.1016/j.neuron.2013.10.044
    [18]
    Wang Z, Jia X, Liang P, et al. Changes in thalamus connectivity in mild cognitive impairment: evidence from resting state fMRI[J]. Eur J Radiol, 2012, 81(2): 277-85. doi: 10.1016/j.ejrad.2010.12.044
    [19]
    Chen N, Dong S, Yan T, et al. High-frequency stimulation of anterior nucleus thalamus improves impaired cognitive function induced by intra-hippocampal injection of Aβ1-40 in rats[J]. Chin Med J (Engl), 2014, 127(1): 125-9.
    [20]
    何绘敏. 大鼠丘脑前核参与学习记忆的分子生物学研究[D]. 大连: 大连医科大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10161-2010151666.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (5443) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return