留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

压缩感知-mDIXON、精准频率反转恢复与短时反转恢复技术在腰椎MR扫描中的应用

刘鹏 牛美晨 刘宏

刘鹏, 牛美晨, 刘宏. 压缩感知-mDIXON、精准频率反转恢复与短时反转恢复技术在腰椎MR扫描中的应用[J]. 分子影像学杂志, 2024, 47(3): 304-310. doi: 10.12122/j.issn.1674-4500.2024.03.13
引用本文: 刘鹏, 牛美晨, 刘宏. 压缩感知-mDIXON、精准频率反转恢复与短时反转恢复技术在腰椎MR扫描中的应用[J]. 分子影像学杂志, 2024, 47(3): 304-310. doi: 10.12122/j.issn.1674-4500.2024.03.13
LIU Peng, NIU Meichen, LIU Hong. Application of compressed sensing- mDIXON, spectrally attenuated inversion recovery and short-time of inversion recovery techniques in lumbar MR scanning[J]. Journal of Molecular Imaging, 2024, 47(3): 304-310. doi: 10.12122/j.issn.1674-4500.2024.03.13
Citation: LIU Peng, NIU Meichen, LIU Hong. Application of compressed sensing- mDIXON, spectrally attenuated inversion recovery and short-time of inversion recovery techniques in lumbar MR scanning[J]. Journal of Molecular Imaging, 2024, 47(3): 304-310. doi: 10.12122/j.issn.1674-4500.2024.03.13

压缩感知-mDIXON、精准频率反转恢复与短时反转恢复技术在腰椎MR扫描中的应用

doi: 10.12122/j.issn.1674-4500.2024.03.13
详细信息
    作者简介:

    刘鹏,硕士,主治医师,E-mail: lpfy10@163.com

Application of compressed sensing- mDIXON, spectrally attenuated inversion recovery and short-time of inversion recovery techniques in lumbar MR scanning

  • 摘要:   目的   研究压缩感知(CS)联合mDIXON技术、精准频率反转恢复(SPAIR)技术与短时反转恢复(STIR)技术在腰椎MR抑制脂肪效果的应用价值。   方法   选取2023年9月7日~2024年1月9日在阜阳市人民医院因腰椎疾病行MR检查的60例患者,分别进行CS-mDIXON、SPAIR与STIR技术的矢状位T2WI扫描。由2名医师采用5分制对3组图像质量进行主观评价;定量对比测量时在L2、L5椎体及L1/2、L5/S1椎间盘4组图像层面正中及相关空气区域放置感兴趣区,分别测量信号强度及噪声强度标准差,计算信噪比(SNR)及对比噪声比(CNR)。   结果   主观评分一致性良好(Kappa系数值>0.75)。CS-mDIXON技术在多种评价方面的分值均优于SPAIR技术与STIR技术(P < 0.05)。在L2、L5椎体层面中,3组技术信号值、噪声值依次增大,差异有统计学意义(P < 0.001),CS-mDIXON的SNR值及CNR值大于SPAIR和STIR技术,差异有统计学意义(P < 0.001);在L1/2、L5/S1椎间盘层面中,CS-mDIXON技术的信号强度分别小于后两组,差异有统计学意义(P < 0.001)。3组噪声值依次增大,SNR值、CNR值依次减小,差异有统计学意义(P < 0.001)。   结论   腰椎MR扫描中,CS-mDIXON技术抑制脂肪的效果更好,同时又可减少扫描时间,可以成为腰椎MR抑脂序列扫描中最好的选择。

     

  • 图  1  ROI测量示意图,红圈示为椎体及椎间盘的ROI区域

    Figure  1.  Schematic diagram of ROI measurement. Red circles indicated ROI regions of the vertebral body and intervertebral disc.

    图  2  患者脂肪抑制图像

    Figure  2.  Fat suppression images of the patient. Patients A-C were male, 43 years old; Patients D-F were female, 80 years old. A: CS-mDIXON technique scanning image, the contrast between spinal cord and cerebrospinal fluid was clear, the spinal cord was uniform, the fat suppression was significant, and the anatomical relationship was clear, all scored 5 points. The contrast between lumbar spinal cord and cerebrospinal fluid was clear, the spinal cord was uniform, and the anatomical relationship was clear; B: The score was 5 points, the fat suppression effect was 3 points, and the fat suppression in some areas of the waist was poor; C: STIR technique, with clear contrast between lumbar spinal cord and cerebrospinal fluid, uniform spinal cord, and clear anatomical relationship, all scored 5 points, and fat suppression effect scored 4 points; D: CS- mDIXON scan image, with clear contrast between spinal cord and cerebrospinal fluid, uniform spinal cord, significant fat suppression, and clear anatomical relationship, all of which were 5 points; E: SPAIR scan image, the contrast between lumbar spinal cord and cerebrospinal fluid was clear, the spinal cord was even, and the anatomical relationship was clear, all scored 5 points, the fat suppression effect was 2 points, the fat suppression in some areas of the lumbar spine failed, and the water suppression in the upper edge of the lumbar spine was partial; F: STIR scanning image, the contrast between lumbar spinal cord and cerebrospinal fluid was clear, the spinal cord was relatively uniform, the anatomical relationship was still clear, all scored 4 points, and the fat suppression effect was also scored 4 points.

    表  1  3种脂肪抑制技术扫描参数

    Table  1.   Scanning parameters of three fat suppression techniques

    Scanning parameters CS-mDIXON SPAIR STIR
    TR(ms) 2500 3327 3500
    TE(ms) 105 80 80
    Matrix 200×241 200×241 200×241
    FOV 180×320 180×320 180×320
    NEX 1 1 1
    Echo train length 19 19 19
    Slice thickness(mm) 4 4 4
    Interlamellar spacing(mm) 0.4 0.4 0.4
    Scanning time(s) 105 140 147
    TR: Time of repetition; TE: Time of echo; FOV: Field of view; NEX: Number of excitations; CS: Compressed sensing; SPAIR: Spectrally attenuated inversion recovery; STIR: Short time of inversion recovery.
    下载: 导出CSV

    表  2  两位观察者主观评分结果一致性检验

    Table  2.   Consistency test of subjective scoring results of two observers [M(P25, P75)]

    Index CS-mDIXON SPAIR STIR
    Comparison of spinal cord
      Doctor 1 4.93(5, 5) 4.87(5, 5) 4.81(5, 5)
      Doctor 2 4.92(5, 5) 4.83(4, 5) 4.80(5, 5)
      Kappa 0.88 0.87 0.937
    Effect of fat suppression
      Doctor 1 4.87(5, 5) 4.58(4, 5) 4.83(5, 5)
      Doctor 2 4.87(5, 5) 4.61(4.75, 5) 4.78(5, 5)
      Kappa 1 0.959 0.802
    Uniformity of spinal cord
      Doctor 1 4.92(5, 5) 4.88(5, 5) 4.87(5, 5)
      Doctor 2 4.90(5, 5) 4.85(4, 5) 4.83(5, 5)
      Kappa 0.9 0.849 0.864
    Normal anatomy
      Doctor 1 4.93(5, 5) 4.92(5, 5) 4.90(5, 5)
      Doctor 2 4.90(5, 5) 4.90(5, 5) 4.82(5, 5)
      Kappa 0.762 0.9 0.776
    下载: 导出CSV

    表  3  图像质量主观评价

    Table  3.   Subjective evaluation of image quality (n=60)

    Index CS-mDIXON SPAIR STIR
    Comparison of spinal cord and cerebrospinal fluid
      Mean score [M(P25, P75)] 4.93(5, 5) 4.87(5, 5) 4.81(5, 5)
      1 point 0 0 0
      2 points 0 0 0
      3 points 0 0 2
      4 points 4 8 7
      5 points 56 52 51
    Uniformity of spinal cord
      Mean score [M(P25, P75)] 4.92(5, 5) 4.88(5, 5) 4.87(5, 5)
      1 point 0 0 0
      2 points 0 0 0
      3 points 0 0 0
      4 points 5 7 8
      5 points 55 53 52
    Effect of fat suppression
      Mean score [M(P25, P75)] 4.87(5, 5) 4.58(4, 5) 4.83(5, 5)
      1 point 0 0 0
      2 points 0 2 0
      3 points 2 5 2
      4 points 4 9 6
      5 points 54 44 52
    Normal anatomy
      Mean score [M(P25, P75)] 4.93(5, 5) 4.92(5, 5) 4.90(5, 5)
      1 point 0 0 0
      2 points 0 0 0
      3 points 0 0 0
      4 points 4 5 7
      5 points 56 55 53
    下载: 导出CSV

    表  4  图像质量客观评价

    Table  4.   Objective evaluation of image quality (Mean±SD)

    Level of measurement CS-mDIXON SPAIR STIR
    L2 vertebral body level
      SI 164.19±52.95 400.41±126.00 513.67±98.56
      N 6.18±3.70 37.45±19.55 67.28±44.58
      SNR 38.95±39.05 14.85±11.71 13.51±14.07
      CNR 36.85±36.49 13.98±11.28 12.47±13.05
    L5 vertebral body level
      SI 148.43±40.27 350.21±90.71 500.02±138.05
      N 6.20±3.10 33.15±15.62 62.48±29.22
      SNR 31.37±19.82 13.27±7.29 10.55±6.64
      CNR 28.90±18.65 12.21±6.85 9.70±6.22
    L1/2 intervertebral disc level
      SI 436.87±177.16 923.62±270.14 999.36±439.99
      N 4.52±2.18 23.13±9.48 42.06±18.96
      SNR 73.70±34.17 30.44±13.26 19.91±13.90
      CNR 72.22±33.65 29.47±12.89 19.06±13.44
    L5/S1 intervertebral disc level
      SI 312.96±131.38 660.64±257.98 766.91±471.83
      N 4.04±2.20 20.89±9.45 40.18±17.62
      SNR 70.70±66.88 26.06±15.75 14.99±13.86
      CNR 69.00±66.63 24.92±15.31 14.14±13.64
    SI: Signal intensity; N: Noise; SNR: Signal-to-noise ratio; CNR: Contrast-to-noise ratio.
    下载: 导出CSV
  • [1] Wu P, Huang C, Li W, et al. Application of magnetic resonance diffusion tensor imaging in the clinical diagnosis of disc herniation after lumbar spine injury[J]. J Healthc Eng, 2021, 2021: 6610988.
    [2] Lorenc T, Gołębiowski M, Michalski W, et al. High-resolution, three-dimensional magnetic resonance imaging axial load dynamic study improves diagnostics of the lumbar spine in clinical practice[J]. World J Orthop, 2022, 13(1): 87-101. doi: 10.5312/wjo.v13.i1.87
    [3] 陈孟艳, 栗敏. 驼背患者腰椎侧卧位MR检查的应用价值[J]. 颈腰痛杂志, 2023, 44(3): 437-9. doi: 10.3969/j.issn.1005-7234.2023.03.034
    [4] 田燕, 马密密, 曹新山. 磁共振脂肪定量技术在骨髓脂肪定量中的应用及进展[J]. 医学影像学杂志, 2020, 30(11): 2113-5. https://www.cnki.com.cn/Article/CJFDTOTAL-XYXZ202011046.htm
    [5] 王卓, 吴祺, 张丽娜. mDixon-Quant技术的临床应用研究进展[J]. 实用放射学杂志, 2024, 40(1): 154-7. doi: 10.3969/j.issn.1002-1671.2024.01.036
    [6] 陈文静, 范海涛, 燕桂新. 磁共振不同脂肪抑制技术在卵巢囊性病变中的诊断价值[J]. 中国医学装备, 2019, 16(10): 45-7. doi: 10.3969/J.ISSN.1672-8270.2019.10.013
    [7] 杨超, 阳波, 徐隽. 3D梯度回波Dixon技术对全肝脂肪肝的定量及治疗效果的评价[J]. 中国医学装备, 2022, 19(3): 102-5. doi: 10.3969/J.ISSN.1672-8270.2022.03.021
    [8] Masrochah S, Fatimah F, Yunitaningrum N. Analisa informasi citra MRI cervical potongan sagital pada variasi nilai time repetition (TR) dengan sekuens short tau inversion recovery (STIR)[J]. J Imejing Diagn Jimed, 2020, 6(2): 79-85.
    [9] 吕艳秋, 王尉, 高帅一, 等. 频率偏移在儿童胸椎快速自旋回波T1WI SPIR抑脂序列图像质量优化中的价值[J]. 磁共振成像, 2023, 14(8): 108-12, 117. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC202308017.htm
    [10] 莫贤福, 张鑫涛, 叶强, 等. PDW-SPAIR序列对类风湿性关节炎活动性病变的诊断价值[J]. 磁共振成像, 2019, 10(10): 757-61. doi: 10.12015/issn.1674-8034.2019.10.008
    [11] Kido T, Hirai K, Ogawa R, et al. Comparison between conventional and compressed sensing cine cardiovascular magnetic resonance for feature tracking global circumferential strain assessment[J]. J Cardiovasc Magn Reson, 2021, 23(1): 10. doi: 10.1186/s12968-021-00708-5
    [12] 孙丽娟, 王家正, 宋清伟, 等. 压缩感知联合并行成像对肾脏3D mDIXON序列的应用[J]. 实用放射学杂志, 2022, 38(1): 144-7. doi: 10.3969/j.issn.1002-1671.2022.01.034
    [13] Naresh NK, Malone L, Fujiwara T, et al. Use of compressed sensing to reduce scan time and breath-holding for cardiac cine balanced steady-state free precession magnetic resonance imaging in children and young adults[J]. Pediatr Radiol, 2021, 51(7): 1192-201. doi: 10.1007/s00247-020-04952-2
    [14] Huang RF, Pan FM, Kong C, et al. Age- and sex-dependent differences in the morphology and composition of paraspinal muscles between subjects with and without lumbar degenerative diseases[J]. BMC Musculoskelet Disord, 2022, 23(1): 734. doi: 10.1186/s12891-022-05692-0
    [15] Fukushima Y, Matsuda A, Koizumi K, et al. Usefulness of model-based iterative reconstruction in low-dose lumbar spine CT after spine surgery with metal implant: a phantom study[J]. Acta Radiol, 2021, 62(10): 1333-40. doi: 10.1177/0284185120961424
    [16] Morbée L, Chen M, Herregods N, et al. MRI-based synthetic CT of the lumbar spine: geometric measurements for surgery planning in comparison with CT[J]. Eur J Radiol, 2021, 144: 109999. doi: 10.1016/j.ejrad.2021.109999
    [17] Saifuddin A, Rajakulasingam R, Santiago R, et al. Comparison of lumbar degenerative disc disease using conventional fast spin echo T2W MRI and T2 fast spin echo Dixon sequences[J]. Br J Radiol, 2021, 94(1121): 20201438. doi: 10.1259/bjr.20201438
    [18] 翟树佳, 马景旭, 赵丽萍, 等. mDIXON及氢质子磁共振波谱在原发性骨质疏松症的应用[J]. 实用放射学杂志, 2018, 34(10): 1576-9.
    [19] 王诗瑜, 刘爱连, 王家正, 等. 压缩感知不同加速因子对肝脏3D-mDixon序列成像质量的影响[J]. 放射学实践, 2020, 35(12): 1605-9. https://www.cnki.com.cn/Article/CJFDTOTAL-FSXS202012028.htm
    [20] 王学东, 刘爱连, 张钦和, 等. 压缩感知技术对3D mDIXON Quant定量分析肝脏脂肪的影响[J]. 中国医学影像技术, 2020, 36(11): 1662-6. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXX202011019.htm
    [21] 林青, 王佳佳, 孙明华, 等. 心脏磁共振压缩感知电影序列的临床应用[J]. 中国医学影像技术, 2020, 36(2): 281-6. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXX202002038.htm
    [22] 浦仁旺, 刘爱连, 王家正, 等. 不同压缩感知加速倍数对三维磁共振胰胆管成像图像质量的影响[J]. 实用放射学杂志, 2021, 37(1): 128-31.
    [23] 刘文. MRI-STIR信号变化对老年骨质疏松型骨折患者延迟愈合或不愈合的评估价值[J]. 中国CT和MRI杂志, 2021, 19(9): 150-3. https://www.cnki.com.cn/Article/CJFDTOTAL-CTMR202109034.htm
    [24] Zhang Y, Chan SW, Chen JH, et al. Development of U-net breast density segmentation method for fat-sat MR images using transfer learning based on non-fat-sat model[J]. J Digit Imag, 2021, 34(4): 877-87.
    [25] 蒋平平, 黄涛, 陈燕清, 等. Fast Dixon与SPAIR技术在乳腺癌MRI T2WI序列的对比研究[J]. 实用放射学杂志, 2023, 39(3): 404-7, 412. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQZ202403010.htm
    [26] Huijgen WHF, van Rijswijk CSP, Bloem JL. Is fat suppression in T1 and T2 FSE with mDixon superior to the frequency selection-based SPAIR technique in musculoskeletal tumor imaging?[J]. Skeletal Radiol, 2019, 48(12): 1905-14.
    [27] Liang CY, Chen MD, Zhao XX, et al. Multiple mathematical models of diffusion‑weighted magnetic resonance imaging combined with prognostic factors for assessing the response to neoadjuvant chemotherapy and radiation therapy in locally advanced rectal cancer[J]. Eur J Radiol, 2019, 110: 249-55.
    [28] 李笑石, 钱一帆, 田娟, 等. Fast Dixon序列结合多次平均激励技术在MR颈椎扫描中的应用[J]. 实用放射学杂志, 2023, 39(2): 314-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQZ202403010.htm
    [29] 姚刚, 梁志鹏, 杨亚芳, 等. Dixon与SPAIR技术在颈部MRI中的脂肪抑制效果对比研究[J]. 中华放射学杂志, 2020, 54(7): 707-12.
    [30] 张浩南, 宋清伟, 张楠, 等. 压缩感知技术在腰椎磁共振快速成像中的应用[J]. 磁共振成像, 2023, 14(2): 132-7, 144. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC202302022.htm
    [31] Kishida Y, Koyama H, Seki S, et al. Comparison of fat suppression capability for chest MR imaging with Dixon, SPAIR and STIR techniques at 3 Tesla MR system[J]. Magn Reson Imaging, 2018, 47: 89-96.
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  11
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-18
  • 网络出版日期:  2024-04-17
  • 刊出日期:  2024-03-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日