留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

封闭隔离环境暴露对海员脑功能影响的静息态fMRI研究

褚者者 张建平 蔡知远 陈双红

褚者者, 张建平, 蔡知远, 陈双红. 封闭隔离环境暴露对海员脑功能影响的静息态fMRI研究[J]. 分子影像学杂志, 2024, 47(3): 264-270. doi: 10.12122/j.issn.1674-4500.2024.03.07
引用本文: 褚者者, 张建平, 蔡知远, 陈双红. 封闭隔离环境暴露对海员脑功能影响的静息态fMRI研究[J]. 分子影像学杂志, 2024, 47(3): 264-270. doi: 10.12122/j.issn.1674-4500.2024.03.07
CHU Zhezhe, ZHANG JianPing, CAI Zhiyuan, CHEN Shuanghong. Influence of exposure to a closed and isolated occupational environment on seafarers brain function by resting-state fMRI[J]. Journal of Molecular Imaging, 2024, 47(3): 264-270. doi: 10.12122/j.issn.1674-4500.2024.03.07
Citation: CHU Zhezhe, ZHANG JianPing, CAI Zhiyuan, CHEN Shuanghong. Influence of exposure to a closed and isolated occupational environment on seafarers brain function by resting-state fMRI[J]. Journal of Molecular Imaging, 2024, 47(3): 264-270. doi: 10.12122/j.issn.1674-4500.2024.03.07

封闭隔离环境暴露对海员脑功能影响的静息态fMRI研究

doi: 10.12122/j.issn.1674-4500.2024.03.07
详细信息
    作者简介:

    褚者者,在读硕士研究生,E-mail: chuzhezhe2022@163.com

    通讯作者:

    陈双红,博士,研究员,E-mail: chen127shh@sina.com

Influence of exposure to a closed and isolated occupational environment on seafarers brain function by resting-state fMRI

  • 摘要:   目的  探讨海上封闭隔离环境及暴露年限对海员脑功能活动的影响,为预防职业环境暴露对海员脑功能损伤提供依据。  方法  于2023年8月招募30名长期从事海上作业的男性职业海员作为海员组,年龄19~29岁,工作年限1~11年,在三亚市人民医院采用Magneton Skyra 3.0 T磁共振扫描仪进行静息态脑功能磁共振成像;匹配无海上作业经历的普通被试30名作为对照组,年龄18~28岁,Magneton Skyra 3.0 T静息态磁共振数据从OpenNeuro公共数据库下载。计算两组静息态ALFF、fALFF和ReHo指标,采用双样本t检验比较两组间脑区ALFF、fALFF和ReHo的差异,进一步采用偏相关分析法分析ALFF、fALFF和ReHo值与海员工作年限和出海年限的相关性。  结果  与对照组相比,海员组右侧中央后回和右侧小脑脚1区的ALFF值较高,左侧嗅皮质的ALFF值较低;左内侧和旁扣带脑回以及右颞级颞上回的fALFF值较高,右侧枕中回、左侧顶下缘角回、左侧中央前回和右侧中央前回的fALFF值较低;右侧海马旁回ReHo值增高,右侧颞下回、右侧眶部额中回、左侧顶下缘角回、左侧角回、右侧颞中回和左侧颞中回ReHo值降低,差异有统计学意义(P < 0.05),采用GRF校正,体素水平P < 0.001,团块水平P < 0.05。海员组右侧中央后回ALFF值与海员工作年限呈弱正相关(r=0.369,P=0.049),右侧枕中回fALFF值与海员工作年限呈弱负相关(r=-0.370,P=0.048)。  结论  长期职业封闭隔离环境暴露对海员多个脑区的脑功能活动造成影响,海员右侧中央后回的ALFF值与工作年限存在弱正相关性,右侧枕中回的fALFF值与海员的工作年限呈弱负相关。

     

  • 图  1  海员组和对照组ALFF、fALFF和ReHo值的差异脑区

    Figure  1.  Differential brain regions of ALFF, fALFF and ReHo values between seafarers and controls. A: The brain regions where ALFF values differed between the seafarer group and the control group; B: The brain regions where fALFF values differed between the seafarers and the control group; C: Brain regions with differences in ReHo values between the seafarers and the control group; The warm color indicated that the seafarer group had an increase compared with the control group, and the cool color indicated that the seafarer group had a lower value compared with the control group.

    表  1  海员组与对照组ALFF、fALFF和ReHo值的差异脑区

    Table  1.   Brain regions with differences in ALFF, fALFF and ReHo values between the seafarer group and the control group.

    Index Brain regions AAL label Peak MNI coordinate Voxels T value
    X Y Z
    ALFF Postcentral_R 58 34 -42 57 1047 14.09
    Cerebelum_Crus1_R 92 42 -66 -30 203 6.88
    Olfactory_L 21 -15 6 -15 84 -27.21
    fALFF Occipital_Mid_R 52 45 -63 27 384 -9.64
    Cingulum_Mid_L 33 -3 -12 33 217 8.53
    Parietal_Inf_L 61 -27 -51 48 169 -7.12
    Precentral_R 2 48 6 39 125 -8.81
    Precentral_L 1 -45 3 39 50 -6.50
    Temporal_Pole_Sup_R 84 36 9 -30 19 7.10
    ReHo Temporal_Inf_R 90 60 -45 -9 378 -13.15
    Frontal_Inf_Orb_R 10 45 42 -9 160 -10.63
    Parietal_Inf_L 61 -42 -45 60 83 -6.12
    Angular_L 65 -39 -63 36 80 -6.21
    ParaHippocampal_R 40 27 -21 -21 57 6.11
    Temporal_Mid_R 86 51 -3 -30 48 -5.44
    Temporal_Mid_L 85 -57 -63 -3 39 -5.90
    AAL: Anatomical automatic labeling; MNI: Montreal neurological institute.
    下载: 导出CSV

    表  2  海员组差异脑区ALFF、fALFF和ReHo值与工作年限和出海年限的偏相关性分析结果

    Table  2.   The partial correlation analysis results of ALFF, fALFF and ReHo values in differential brain regions with years of working and years at sea in the seafarer group.

    Years of exposure Index Brain regions r(working years/years at sea) P(working years/years at sea)
    Working years/Years at sea ALFF Postcentral_R 0.369/0.071 0.049/0.715
    Cerebelum_Crus1_R -0.215/-0.160 0.263/0.406
    Olfactory_L 0.210/0.109 0.275/0.575
    fALFF Occipital_Mid_R -0.370/-0.219 0.048/0.254
    Cingulum_Mid_L 0.108/0.281 0.579/0.140
    Parietal_Inf_L 0.210/0.128 0.274/0.509
    Precentral_R -0.011/0.049 0.956/0.800
    Precentral_L 0.056/0.196 0.773/0.308
    Temporal_Pole_Sup_R -0.312/0.042 0.099/0.827
    ReHo Temporal_Inf_R 0.123/-0.053 0.525/0.785
    Frontal_Inf_Orb_R 0.223/0.028 0.245/0.887
    Parietal_Inf_L 0.318/0.052 0.093/0.787
    Angular_L 0.223/-0.003 0.245/0.989
    下载: 导出CSV
  • [1] Stijovic A, Forbes PAG, Tomova L, et al. Homeostatic regulation of energetic arousal during acute social isolation: evidence from the lab and the field[J]. Psychol Sci, 2023, 34(5): 537-51. doi: 10.1177/09567976231156413
    [2] 郭静利, 郝永建, 张阳东, 等. 某部317名全封闭环境驻训官兵心理健康状况调查[J]. 解放军预防医学杂志, 2020, 38(2): 78-80. https://www.cnki.com.cn/Article/CJFDTOTAL-JYYX202002027.htm
    [3] 任召祺, 曾丁, 武涧松, 等. 密闭驻训环境下新兵应激反应变化及其对认知功能的影响[J]. 武警医学, 2022, 33(8): 663-6, 671. doi: 10.3969/j.issn.1004-3594.2022.08.005
    [4] Johansson ME, Cameron IGM, Van der Kolk NM, et al. Aerobic exercise alters brain function and structure in Parkinson's disease: a randomized controlled trial[J]. Ann Neurol, 2022, 91(2): 203-16. doi: 10.1002/ana.26291
    [5] 尹大志. 多模态磁共振成像数据分析方法研究与应用[D]. 上海: 华东师范大学, 2014.
    [6] 马跃, 何家恺, 郭春蕾, 等. 轻中度抑郁症静息态fMRI低频振幅与血清炎症因子相关性研究[J]. 磁共振成像, 2023, 14(9): 1-6, 18. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC202309001.htm
    [7] Zuo XN, Di Martino A, Kelly C, et al. The oscillating brain: complex and reliable[J]. NeuroImage, 2010, 49(2): 1432-45. doi: 10.1016/j.neuroimage.2009.09.037
    [8] 丁菊容, 李原, 华波, 等. 缺血性中风患者脑功能活动局部一致性改变与认知功能障碍的研究[J]. 磁共振成像, 2023, 14(9): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC202309002.htm
    [9] Lv H, Wang Z, Tong E, et al. Resting-state functional MRI: everything that nonexperts have always wanted to know[J]. AJNR Am J Neuroradiol, 2018, 39(8): 1390-9.
    [10] 赵琦, 陆颖之, 王莹莹, 等. 舞蹈运动员大脑感知运动系统的功能特征: 一项静息态功能磁共振研究[J]. 中国运动医学杂志, 2017, 36 (12): 1081-6. doi: 10.3969/j.issn.1000-6710.2017.12.009
    [11] Liao Y, Lei MY, Huang HB, et al. The time course of altered brain activity during 7- day simulated microgravity[J]. Front Behav Neurosci, 2015, 9: 124.
    [12] Muellbacher W, Ziemann U, Boroojerdi B, et al. Role of the human motor cortex in rapid motor learning[J]. Exp Brain Res, 2001, 136 (4): 431-8. doi: 10.1007/s002210000614
    [13] Lemon RN. Descending pathways in motor control[J]. Annu Rev Neurosci, 2008, 31: 195-218. doi: 10.1146/annurev.neuro.31.060407.125547
    [14] 高剑奇, 曾卫明, 王倪传, 等. fMRI低频振幅比在海员心理评估方面的比较分析[J]. 磁共振成像, 2016, 7(8): 608-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC201608014.htm
    [15] 高剑奇, 曾卫明, 王倪传, 等. 基于fMRI的人脑功能可塑性研究: 以海员职业为例[J]. 中国科技论文, 2016, 11(18): 2130-3, 2138. doi: 10.3969/j.issn.2095-2783.2016.18.021
    [16] Fateh AA, Huang WX, Hassan M, et al. Default mode network connectivity and social dysfunction in children with Attention Deficit/Hyperactivity Disorder[J]. Int J Clin Health Psychol, 2023, 23(4): 100393. doi: 10.1016/j.ijchp.2023.100393
    [17] Klein-Flügge MC, Bongioanni A, Rushworth MFS. Medial and orbital frontal cortex in decision-making and flexible behavior[J]. Neuron, 2022, 110(17): 2743-70. doi: 10.1016/j.neuron.2022.05.022
    [18] Owen AM. The role of the lateral frontal cortex in mnemonic processing: the contribution of functional neuroimaging[J]. Exp Brain Res, 2000, 133(1): 33-43. doi: 10.1007/s002210000398
    [19] Shi YC, Zeng WM, Wang NZ, et al. Early warning for human mental sub-health based on fMRI data analysis: an example from a seafarers' resting-data study[J]. Front Psychol, 2015, 6: 1030.
    [20] Oka T. Studies on the olfactory fatigue by T & T olfactometer (author's transl)[J]. J Otolaryng Jap, 1981, 84(8): 850-7.
    [21] Saito N, Yamano E, Ishii A, et al. Involvement of the olfactory system in the induction of anti-fatigue effects by odorants[J]. PLoS One, 2018, 13(3): e0195263.
    [22] Mori K, Sakano H. Olfactory circuitry and behavioral decisions[J]. Annu Rev Physiol, 2021, 83: 231-56.
    [23] Zang YP, Han PF, Joshi A, et al. Individual variability of olfactory fMRI in normosmia and olfactory dysfunction[J]. Eur Arch Otorhinolaryngol, 2021, 278(2): 379-87.
    [24] Vázquez-Costa JF, Tembl JI, Fornés-Ferrer V, et al. Genetic and constitutional factors are major contributors to substantia nigra hyperechogenicity[J]. Sci Rep, 2017, 7(1): 7119.
    [25] 陈红, 吴亚琳, 龙淼淼, 等. 嗅觉功能磁共振成像评估对非痴呆老年人认知下降的预测价值[J]. 中国医学影像学杂志, 2021, 29(10): 961-7, 973. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYZ202110002.htm
    [26] Ye Z, Rüsseler J, Gerth I, et al. Audiovisual speech integration in the superior temporal region is dysfunctional in dyslexia[J]. Neuroscience, 2017, 356: 1-10.
    [27] Saygin AP, Sereno MI. Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex[J]. Cereb Cortex, 2008, 18(9): 2158-68.
    [28] Tanaka S, Michimata C, Kaminaga T, et al. Superior digit memory of abacus experts: an event-related functional MRI study[J]. Neuroreport, 2002, 13(17): 2187-91.
    [29] Chen HJ, Zhu XQ, Yang M, et al. Changes in the regional homogeneity of resting-state brain activity in minimal hepatic encephalopathy[J]. Neurosci Lett, 2012, 507(1): 5-9.
    [30] Chen XM, Zhang Q, Wang JY, et al. Cognitive and neuroimaging changes in healthy immigrants upon relocation to a high altitude: a panel study[J]. Hum Brain Mapp, 2017, 38(8): 3865-77.
    [31] Huang RR, Wang AJ, Ba XR, et al. Association functional MRI studies of resting-state amplitude of low frequency fluctuation and voxel- based morphometry in patients with occupational noise-induced hearing loss[J]. J Occup Environ Med, 2020, 62(7): 472-7. http://pubmed.ncbi.nlm.nih.gov/32730022/
    [32] Zhang YQ, Zhang WJ, Liu JH, et al. Effects of chronic hypoxic environment on cognitive function and neuroimaging measures in a high-altitude population[J]. Front Aging Neurosci, 2022, 14: 788322.
    [33] Zhou Y, Wang Y, Rao LL, et al. Disrupted resting-state functional architecture of the brain after 45- day simulated microgravity[J]. Front Behav Neurosci, 2014, 8: 200.
    [34] Xue S, Wang X, Wang WQ, et al. Frequency-dependent alterations in regional homogeneity in major depression[J]. Behav Brain Res, 2016, 306: 13-9.
    [35] George JM, Bell ZW, Condliffe D, et al. Acute social isolation alters neurogenomic state in songbird forebrain[J]. Proc Natl Acad Sci USA, 2020, 117(38): 23311-6.
    [36] Benfato ID, Quintanilha ACS, Henrique JS, et al. Effects of long-term social isolation on central, behavioural and metabolic parameters in middle- aged mice[J]. Behav Brain Res, 2022, 417: 113630.
    [37] Kim GS, Lee H, Jeong Y. Altered dorsal functional connectivity after post-weaning social isolation and resocialization in mice[J]. NeuroImage, 2021, 245: 118740.
    [38] Watanabe S, Omran AA, Shao AS, et al. Dihydromyricetin improves social isolation-induced cognitive impairments and astrocytic changes in mice[J]. Sci Rep, 2022, 12(1): 5899.
    [39] Al Omran AJ, Shao AS, Watanabe S, et al. Social isolation induces neuroinflammation and microglia overactivation, while dihydromyricetin prevents and improves them[J]. J Neuroinflammation, 2022, 19(1): 2.
    [40] Bastioli G, Arnold JC, Mancini M, et al. Voluntary exercise boosts striatal dopamine release: evidence for the necessary and sufficient role of BDNF[J]. J Neurosci, 2022, 42(23): 4725-36.
    [41] Ross RE, VanDerwerker CJ, Saladin ME, et al. The role of exercise in the treatment of depression: biological underpinnings and clinical outcomes[J]. Mol Psychiatry, 2023, 28(1): 298-328.
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-12
  • 网络出版日期:  2024-04-17
  • 刊出日期:  2024-03-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日