留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

关于人工耳蜗植入治疗遗传性耳聋的研究进展

李瑜 纳玉萍 郭敏

李瑜, 纳玉萍, 郭敏. 关于人工耳蜗植入治疗遗传性耳聋的研究进展[J]. 分子影像学杂志, 2017, 40(2): 214-219. doi: 10.3969/j.issn.1674-4500.2017.02.25
引用本文: 李瑜, 纳玉萍, 郭敏. 关于人工耳蜗植入治疗遗传性耳聋的研究进展[J]. 分子影像学杂志, 2017, 40(2): 214-219. doi: 10.3969/j.issn.1674-4500.2017.02.25

关于人工耳蜗植入治疗遗传性耳聋的研究进展

doi: 10.3969/j.issn.1674-4500.2017.02.25
详细信息
    作者简介:

    李瑜:李  瑜,硕士研究生,E-mail: 781063963@qq.com

    通讯作者:

    纳玉萍,教授,主任医师,E-mail: nayuping897@126.com

  • 摘要: 耳聋的致病因素复杂,50%以上由遗传因素所致。遗传性耳聋80%为常染色体隐性遗传模式,其中70%~80%为非综合征性耳聋,15%~24%为常染色体显性遗传模式,其余1%~2%为连锁遗传模式。母系遗传性聋发病多与氨基糖苷类抗生素诱发有关,不当用药会造成敏感个体的重度感音性聋。目前发现大约120个耳聋致病基因,包括数个耳聋重点致病基因:GJB2、SLC26A4及线粒体DNA A1555G突变等。人工耳蜗是一种生物医学工程装置,可以帮助听力障碍人士恢复听力和言语交流能力的。近年来随着科技的不断发展和完善,人工耳蜗植入技术已日趋成熟,其临床应用在我国也得到了逐步开展,并取得了较为显著的疗效。然而,人工耳蜗植入并非适合所有耳聋患者,其适应症还在进一步的总结和探索当中,明确患者的耳聋病因是衡量手术指针的首要因素。本文就应用人工耳蜗植入治疗遗传性耳聋的现状及其未来发展趋势作简要介绍。

     

  • 表  1  常染色体隐性遗传的非综合征型聋相关基因

    基因名称 编码蛋白质功能 染色体定位
    GBJ2(Cx26) 跨膜间隙连接蛋,维持离子内环境稳定 13q11-q12
    MYO15 细胞骨架蛋,参静纤毛构成 17q11.2
    MYO7A 细胞骨架蛋,参与纤毛构成及运动 11q13.5
    PDS(SLC26A4) 跨膜蛋白,参与内淋巴液平衡 7q31
    OTOF 细胞外基质成分参与毛细胞和I型前庭感觉细胞构成 2q22-q23
    TECTA 细胞外基质成分,Corti器的适配结构 11q22-q24
    下载: 导出CSV

    表  2  常染色体显性遗传的非综合征型聋相关基因

    基因名称 编码蛋白质功能 染色体定位
    hDIAPH1 细胞骨架蛋白,促进毛细胞收缩结构成熟 5q31
    GJB3 跨膜间隙连接蛋,影响结合子间相互作用 1q34
    KCNQ4 钾通道蛋白超家族,形成跨膜钾通道 1q34
    GJB6 跨膜间隙连接蛋白,维持离子内环境稳态 13q12
    GJB2 跨膜间隙连接蛋白,维持离子内环境稳态 13q12
    DFNA5 尚不明确,可能与DNA复制终止有关 7q15
    TECTA 细胞外基质成分,Corti器的适配结构 11q22-q24
    MYO7A 细胞骨架蛋白,参与纤毛构成及运动 11q2.3-q21
    COL11A2 细胞外质成分,参与构成II型胶原蛋白α亚单位 6q21
    COCH 细胞外基质成分,参与听力及前庭功能 14q12-13
    POU4F3 转录因子,调节功能蛋白转录 35q31
    下载: 导出CSV

    表  3  X染色体连锁遗传相关基因

    基因名称 编码蛋白质功能 染色体定位
    DDP 参与神经髓鞘蛋白的形成 Xq22
    POU4F3 转录因子,调节功能蛋白转录 Xq21.1
    下载: 导出CSV
  • [1] Kalatzis V, Petit C. The fundamental and medical impacts of recent progress in research on hereditary hearing loss[J]. Hum Mol Genet, 1998, 7(10): 1589-97. doi: 10.1093/hmg/7.10.1589
    [2] Morton CC. Genetics, genomics and gene discovery in the auditory system[J]. Hum Mol Genet, 2002, 11(10): 1229-40. doi: 10.1093/hmg/11.10.1229
    [3] 刘 军. 人工耳蜗植入患者耳聋分子发病机制及疗效研究[D]. 北京: 中国人民解放军军医进修学院, 2007.
    [4] Scott DA, Kraft ML, Stone EM, et al. Connexin mutations and hearing loss[J]. Nature, 1998, 391(6662): 32-6. doi: 10.1038/34079
    [5] Denoyelle F, Weil D, Maw MA, et al. Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene[J]. Hum Mol Genet, 1997, 6(12): 2173-7. doi: 10.1093/hmg/6.12.2173
    [6] Kelsell DP, Dunlop J, Stevens HP, et al. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness[J]. Nature, 1997, 387(6628): 80-3. doi: 10.1038/387080a0
    [7] 肖晓光, 严 勇, 徐 丽, 等. Connexin26基因与常染色体隐性非综合征性耳聋[J]. 国外医学: 遗传学分册, 2003, 26(2): 110-2. http://www.cnki.com.cn/Article/CJFDTOTAL-GWYY200302016.htm
    [8] 于 飞, 韩东一, 戴 朴, 等. et al: 1190例非综合征性耳聋患者GJB2基因突变序列分析[J]. 中华医学杂志, 2007, 318(40): 2814-9. doi: 10.3760/j.issn:0376-2491.2007.40.003
    [9] Rabionet R, Gasparini P, Estivill X. Molecular genetics of hearing impairment due to mutations in gap junction genes encoding beta connexins[J]. Hum Mutat, 2000, 16(3): 190-202. doi: 10.1002/(ISSN)1098-1004
    [10] Richard G, Smith LE, Bailey RA, et al. Mutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis[J]. Nat Genet, 1998, 20(4): 366-9. doi: 10.1038/3840
    [11] Bruzzone R, White TW, Paul DL. Connections with connexins: the molecular basis of direct intercellular signaling[J]. Europ J Biochem, 1996, 238(1): 1-27. doi: 10.1111/ejb.1996.238.issue-1
    [12] D’andrea P. Veronesi V, Bicego M, et al. Hearing loss: frequency and functional studies of the most common connexin 26 alleles[J]. Biochem Biophys Res Commun, 2002, 296(3): 685-91. doi: 10.1016/S0006-291X(02)00891-4
    [13] Everett LA, Glaser B, Beck JC, et al. Baxevanis AD et al: pendred syndrome is caused by mutations in a putative sulphate transporter gene(PDS)[J]. Nature genetics 1997, 17(4): 411-22. doi: 10.1038/ng1297-411
    [14] Campbell C, Cucci RA, Prasad S, et al. Pendred syndrome, DFNB4, and PDS/SLC26A4 identification of eight novel mutations and possible genotype-phenotype correlations[J]. Hum Mutat, 2001, 17(5): 403-11. doi: 10.1002/(ISSN)1098-1004
    [15] Usami S, Abe S, Weston MD, et al. Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS mutations[J]. Hum Genet, 1999, 104(2): 188-92. doi: 10.1007/s004390050933
    [16] Varghese CM, Scampion P, Das VK, et al. Enlarged vestibular aqueduct in two male siblings[J]. Dev Med Child Neurol, 2002, 44(10): 706-11.
    [17] Smith RJ. Clinical application of genetic testing for deafness[J]. Am J Med Genet A, 2004, 130A(1): 8-12. doi: 10.1002/(ISSN)1096-8628
    [18] Abe S, Usami S, Hoover DM, et al. Fluctuating sensorineural hearing loss associated with enlarged vestibular aqueduct maps to 7q31, the region containing the Pendred gene[J]. Am J Med Genet, 1999, 82(4): 322-8. doi: 10.1002/(ISSN)1096-8628
    [19] 王锦玲. 大前庭水管综合征与波动性听力损失[J]. 听力学及言语疾病杂志, 2003, 11(2): 81-4. http://www.cnki.com.cn/Article/CJFDTOTAL-TLXJ200302000.htm
    [20] Prezant TR, Agapian JV, Bohlman MC, et al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness[J]. Nat Genet, 1993, 4(3): 289-94. doi: 10.1038/ng0793-289
    [21] Dai P, Liu X, Han D, et al. Extremely low penetrance of deafness associated with the mitochondrial 12S rRNA mutation in 16 Chinese families: implication for early detection and prevention of deafness[J]. Biochem Biophys Res Commun, 2006, 340(1): 194-9. doi: 10.1016/j.bbrc.2005.11.156
    [22] Li Z, Li R, Chen J, et al. Mutational analysis of the mitochondrial 12S rRNA gene in Chinese pediatric subjects with aminoglycoside-induced and non-syndromic hearing loss[J]. Hum Genet, 2005, 117(1): 9-15. doi: 10.1007/s00439-005-1276-1
    [23] Wang Q, Li QZ, Han D, et al. Clinical and molecular analysis of a four-generation Chinese family with aminoglycoside-induced and nonsyndromic hearing loss associated with the mitochondrial 12S rRNA C1494T mutation[J]. Biochem Biophys Res Commun, 2006, 340(2): 583-8. doi: 10.1016/j.bbrc.2005.12.045
    [24] Yuan H, Qian Y, Xu Y, et al. Cosegregation of the G7444A mutation in the mitochondrial COI/tRNA(Ser(UCN)) genes with the 12S rRNA A1555G mutation in a Chinese family with aminoglycoside-induced and nonsyndromic hearing loss[J]. Am J Med Genet A, 2005, 138A(2): 133-40. doi: 10.1002/(ISSN)1552-4833
    [25] Zhu Y, Qian Y, Tang X, et al. Aminoglycoside-induced and non-syndromic hearing loss is associated with the G7444A mutation in the mitochondrial COI/tRNASer(UCN) genes in two Chinese families[J]. Biochem Biophys Res Commun, 2006, 342(3): 843-50. doi: 10.1016/j.bbrc.2006.02.027
    [26] 管敏鑫, 赵立东. 与氨基糖甙类抗生素耳毒性相关的线粒体12S rRNA突变的流行病学特征[J]. 中华耳科学杂志, 2006, 4(2): 98-105. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHER200602002.htm
    [27] 郭玉芬, 徐百成, 韩东一, 等. 中国西北地区线粒体DNA12SrRNAA1555G和GJB2基因突变[J]. 中国耳鼻咽喉头颈外科, 2006, 13(10): 666-9. doi: 10.3969/j.issn.1672-7002.2006.10.003
    [28] Nance WE, Kearsey MJ. Relevance of connexin deafness (DFNB1) to human evolution[J]. Am J Hum Genet, 2004, 74(6): 1081-7. doi: 10.1086/420979
    [29] 鲁雅洁, 程洪波, 邢光前, 等. 非综合征型耳聋GJB2基因和mtDNA 12SrRNA A1555G位点的突变分析[J]. 南京医科大学学报: 自然科学版, 2008, 11(07): 855-60. http://www.cnki.com.cn/Article/CJFDTOTAL-NJYK200807010.htm
    [30] Xia JH, Liu CY, Tang BS, et al. Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment[J]. Nat Genet, 1998, 20(4): 370-3. doi: 10.1038/3845
    [31] Morell RJ, Kim HJ, Hood LJ, et al. Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness[J]. N Engl J Med, 1998, 339(21): 1500-5. doi: 10.1056/NEJM199811193392103
    [32] Sinnathuray AR, Toner JG, Clarke LJ, et al. Connexin 26 (GJB2) gene-related deafness and speech intelligibility after cochlear implantation[J]. Otol Neurotol, 2004, 25(6): 935-42. doi: 10.1097/00129492-200411000-00013
    [33] Cullen RD, Buchman CA, Brown CJ, et al. Cochlear implantation for children with GJB2-related deafness[J]. Laryngoscope, 2004, 114(8): 1415-9. doi: 10.1097/00005537-200408000-00019
    [34] Taitelbaum-Swead R, Brownstein Z, Muchnik C, et al. Connexin-associated deafness and speech perception outcome of cochlear implantation[J]. Arch Otolaryngol Head Neck Surg, 2006, 132(5): 495-500. doi: 10.1001/archotol.132.5.495
    [35] Kawasaki A, Fukushima K, Kataoka Y, et al. Using assessment of higher brain functions of children with GJB2-associated deafness and cochlear implants as a procedure to evaluate language development[J]. Int J Pediatr Otorhinolaryngol, 2006, 70(8): 1343-9. doi: 10.1016/j.ijporl.2006.01.010
    [36] Fahy CP, Carney AS, Nikolopoulos TP, et al. Cochlear implantation in children with large vestibular aqueduct syndrome and a review of the syndrome[J]. Int J Pediatr Otorhinolaryngol, 2001, 59(3): 207-15. doi: 10.1016/S0165-5876(01)00487-6
    [37] Miyamoto RT, Bichey BG, Wynne MK, et al. Cochlear implantation with large vestibular aqueduct syndrome[J]. Laryngoscope, 2002, 112(7 Pt 1): 1178-82.
    [38] Sinnathuray AR, Raut V, Awa A, et al. A review of cochlear implantation in mitochondrial sensorineural hearing loss[J]. Otol Neurotol, 2003, 24(3): 418-26. doi: 10.1097/00129492-200305000-00012
    [39] Tono T, Ushisako Y, Kiyomizu K, et al. Cochlear implantation in a patient with profound hearing loss with the A1555G mitochondrial mutation[J]. Am J Otol, 1998, 19(6): 754-7.
    [40] 曹永茂, 华清泉, 吴展元, 等. 小儿大前庭水管综合征的人工耳蜗植入[J]. 听力学及言语疾病杂志, 2004, 12(5): 298-300. http://cdmd.cnki.com.cn/Article/CDMD-10335-1016282823.htm
    [41] 韩德民, 赵啸天, 李永新, 等. 人工耳蜗在前庭水管扩大患者中的应用[J]. 中华耳鼻咽喉科杂志, 2003, 38(2): 108-10. http://www.cnki.com.cn/Article/CJFDTOTAL-FSJX201212048.htm
    [42] 胡宝华, 张道行. 大前庭水管人工耳蜗植入术6例[J]. 中国耳鼻咽喉颅底外科杂志, 2003, 9(6): 379-84. http://cdmd.cnki.com.cn/Article/CDMD-10533-2010188494.htm
    [43] 王 轶, 曹克利, 郑振宇, 等. 前庭水管扩大综合征患者的人工耳蜗植入术[J]. 中华耳鼻咽喉科杂志, 2003, 38(2): 104-7. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHEB200302010.htm
    [44] Connor CM, Zwolan TA. Examining multiple sources of influence on the reading comprehension skills of children who use cochlear implants[J]. J Speech Lang Hear Res, 2004, 47(3): 509-26. doi: 10.1044/1092-4388(2004/040)
    [45] Lin FR, Ceh K, Bervinchak D, et al. Development of a communicative performance scale for pediatric cochlear implantation[J]. Ear Hear, 2007, 28(5): 703-12. doi: 10.1097/AUD.0b013e31812f71f4
    [46] Rajput K, Brown T, Bamiou DE. Aetiology of hearing loss and other related factors versus language outcome after cochlear implantation in children[J]. Int J Pediatr Otorhinolaryngol, 2003, 67(5): 497-504. doi: 10.1016/S0165-5876(03)00006-5
    [47] 马秀芳. 内耳畸形HRCT影像学研究及SNHL家系耳聋相关基因的检测[D]. 山东: 山东大学, 2009.
    [48] 戴 朴, 韩 冰, 袁永一, 等. 基于基因诊断的耳聋遗传咨询, 指导作用的初步观察[J]. 中华医学杂志, 2007, 21(16): 1088-92. doi: 10.3760/j:issn:0376-2491.2007.16.004
    [49] 韩明昱, 卢彦平, 边旭明, 等. 遗传性耳聋家庭康复与预防模式的探讨[J]. 中华耳科学杂志, 2014, 8(1): 11-4. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHER201401004.htm
    [50] Liu XZ, Xia XJ, Ke XM, et al. The prevalence of connexin 26 (GJB2) mutations in the Chinese population[J]. Hum Genet, 2002, 111(4/5): 394-7.
    [51] Liu Y, Ke X, Qi Y, et al. Connexin26 gene (GJB2): prevalence of mutations in the Chinese population[J]. J Hum Genet, 2002, 47(12): 688-90. doi: 10.1007/s100380200106
  • 加载中
表(3)
计量
  • 文章访问数:  589
  • HTML全文浏览量:  252
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-25
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日