留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

传代次数对人胶质瘤U87细胞系生物学特性的影响

王济舟 曾宇 宋烨 漆松涛

王济舟, 曾宇, 宋烨, 漆松涛. 传代次数对人胶质瘤U87细胞系生物学特性的影响[J]. 分子影像学杂志, 2017, 40(2): 202-206. doi: 10.3969/j.issn.1674-4500.2017.02.22
引用本文: 王济舟, 曾宇, 宋烨, 漆松涛. 传代次数对人胶质瘤U87细胞系生物学特性的影响[J]. 分子影像学杂志, 2017, 40(2): 202-206. doi: 10.3969/j.issn.1674-4500.2017.02.22
Jizhou WANG, Yu ZENG, Ye SONG, Songtao QI. Effect of different passage number on the biological characteristics of U87 glioblastoma cell line[J]. Journal of Molecular Imaging, 2017, 40(2): 202-206. doi: 10.3969/j.issn.1674-4500.2017.02.22
Citation: Jizhou WANG, Yu ZENG, Ye SONG, Songtao QI. Effect of different passage number on the biological characteristics of U87 glioblastoma cell line[J]. Journal of Molecular Imaging, 2017, 40(2): 202-206. doi: 10.3969/j.issn.1674-4500.2017.02.22

传代次数对人胶质瘤U87细胞系生物学特性的影响

doi: 10.3969/j.issn.1674-4500.2017.02.22
详细信息
    作者简介:

    王济舟,博士研究生,E-mail: spiderpy@163.com

    通讯作者:

    漆松涛,主任医师,教授,博士生导师,E-mail: qisongtaonfyy@ 126.com

Effect of different passage number on the biological characteristics of U87 glioblastoma cell line

  • 摘要: 目的 探索不同传代次数对人胶质瘤U87细胞系生物学特性的影响及其分子机制。 方法 以两种不同传代次数的U87(I)、U87(II)为研究对象,使用MTT细胞增殖实验、Transwell小室迁移实验及Boyden小室侵袭实验分别检测U87细胞的增殖、迁移和侵袭能力;使用Western Blot技术检测U87(Ⅰ)及U87(Ⅱ)的CTHRC1, FOXM1, PLOD2, MMP9, TGF-β, E-cadherin, Slug, Snail, Vimentin, PI3K, p-PI3K, Akt, p-Akt的表达量差异。 结果 U87(Ⅰ)较U87(Ⅱ)更容易形成网状结构,有更强的侵袭能力,但在增殖和迁移能力上二者无明显差异。在EMT相关蛋白表达水平上,U87(Ⅰ)中的Snail、Vimentin的表达量较U87(Ⅱ)的高,而E-Cadherin、Slug则较低;在PI3K/Akt通路蛋白表达水平上,U87(Ⅰ)的p-Akt,Akt的表达量均低于U87(II),而p-PI3K的表达量却高于U87(II),两者在PI3K的表达量上无明显差异;除此之外,U87(I)中PLOD2、CTHRC1及MMP9的表达量也明显高于U87(II),而TGF-β的表达量则低于后者。 结论 随着传代次数的增加,U87细胞在侵袭能力以及多个促癌基因表达上发生了变化,这可能造成分子机制研究的前后结果不一致,降低结果的可信程度,因此研究人员在进行细胞系实验时,应尽可能在短时间内,使用同一批次细胞完成生物学特性、分子机制研究,以减少传代次数对肿瘤细胞系生物学特性以及基因表达的影响。

     

  • 图  1  U87(Ⅰ)与U87(Ⅱ)在镜下的形态差异

    图  2  U87(Ⅰ)和U87(Ⅱ)之间增殖能力的差异

    图  3  U87(Ⅰ)和U87(Ⅱ)之间迁移、侵袭能力的差异

    图  4  U87(Ⅰ)和U87(Ⅱ)之间多种促癌基因表达量在蛋白水平上的差异

  • [1] Barretina J, Caponigro G, Stransky N, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity[J]. Nature, 2012, 483(7391): 603-7. doi: 10.1038/nature11003
    [2] Haverty PM, Lin E, Tan J, et al. Reproducible pharmacogenomic profiling of cancer cell line panels[J]. Nature, 2016, 533(763): 333-7.
    [3] Cancer cell line encyclopedia consortium, genomics of drug sensitivity in cancer consortium. pharmacogenomic agreement between two cancer cell line data sets[J]. Nature, 2015, 528(7580): 84-7.
    [4] Whitington T, Gao P, Song W, et al. Gene regulatory mechanisms underpinning prostate cancer susceptibility[J]. Nat Genet, 2016, 48(4): 387-97. doi: 10.1038/ng.3523
    [5] Que T, Song Y, Liu Z, et al. Decreased miRNA-637 is an unfavorable prognosis marker and promotes glioma cell growth, migration and invasion via direct targeting Akt1[J]. Oncogene, 2015, 34(38): 4952-63. doi: 10.1038/onc.2014.419
    [6] He YC, Chen FC, Cai Y. Retracted: knockdown of tumor protein D52-like 2 induces cell growth inhibition and apoptosis in oral squamous cell carcinoma[J]. Cell Biol Int, 2016, 40(3): 361-4. doi: 10.1002/cbin.v40.3
    [7] Zhang P, Yang Y, Zweidler-Mckay P, et al. Retraction: critical role of notch signaling in osteosarcoma invasion and metastasis[J]. Clin Cancer Res, 2013, 19(18): 5256-7. doi: 10.1158/1078-0432.CCR-13-1914
    [8] Lin HK, Hu YC, Yang L, et al. Suppression versus induction of androgen receptor functions by the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer LNCaP cells with different passage numbers[J]. J Biol Chem, 2003, 278(51): 50902-7. doi: 10.1074/jbc.M300676200
    [9] Dolgin E. Venerable brain-cancer cell line faces identity crisis[J]. Nature, 2016, 537(7619): 149-50.
    [10] Song Y, Luo Q, Long H, et al. Alpha-enolase as a potential cancer prognostic marker promotes cell growth, migration, and invasion in glioma[J]. Mol Cancer, 2014, 13(5): 65-7.
    [11] Song Y, Hu Z, Long H, et al. A complex mechanism for HDGF-mediated cell growth, migration, invasion, and TMZ chemosensitivity in glioma[J]. J Neurooncol, 2014, 119(2): 285-95. doi: 10.1007/s11060-014-1512-4
    [12] Qi S, Song Y, Peng Y, et al. ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma[J]. PLoS One, 2012, 7(6): e38842-4. doi: 10.1371/journal.pone.0038842
    [13] Francescone R, Scully S, Bentley B, et al. Glioblastoma-derived tumor cells induce vasculogenic mimicry through Flk-1 protein activation[J]. J Biol Chem, 2012, 287(29): 24821-31. doi: 10.1074/jbc.M111.334540
    [14] Joseph JV, van Roosmalen IA, Busschers E, et al. Serum-Induced differentiation of glioblastoma neurospheres leads to enhanced migration/invasion capacity that is associated with increased MMP9[J]. PLoS One, 2015, 10(12): e0145393-5. doi: 10.1371/journal.pone.0145393
    [15] Wang F, Xiao W, Sun J, et al. MiRNA-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma[J]. Tumour Biol, 2014, 35(9): 8653-8. doi: 10.1007/s13277-014-2131-6
    [16] Allen M, Bjerke M, Edlund H, et al. Origin of the U87MG glioma cell line: Good news and bad news[J]. Sci Transl Med, 2016, 8(354): 354re3-5. doi: 10.1126/scitranslmed.aaf6853
    [17] Depner C, Zum BH, Böğürcü N, et al. EphrinB2 repression through ZEB2 mediates tumour invasion and anti-angiogenic resistance[J]. Nat Commun, 2016, 7(4): 12329-33.
    [18] Kim D, Fiske BP, Birsoy K, et al. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance[J]. Nature, 2015, 520(7547): 363-7. doi: 10.1038/nature14363
  • 加载中
图(4)
计量
  • 文章访问数:  1562
  • HTML全文浏览量:  715
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-06
  • 刊出日期:  2017-04-01

目录

    /

    返回文章
    返回