留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

腹膜纤维化机制与治疗新进展

刘玲玲 成蔚 周伟东 潘金英 黄波

刘玲玲, 成蔚, 周伟东, 潘金英, 黄波. 腹膜纤维化机制与治疗新进展[J]. 分子影像学杂志, 2016, 39(4): 437-442. doi: 10.3969/j.issn.1674-4500.2016.04.28
引用本文: 刘玲玲, 成蔚, 周伟东, 潘金英, 黄波. 腹膜纤维化机制与治疗新进展[J]. 分子影像学杂志, 2016, 39(4): 437-442. doi: 10.3969/j.issn.1674-4500.2016.04.28
Lingling LIU, Wei CHENG, Weidong ZHOU, Jinying PAN, Bo HUANG. Mechanisms and prospects of interventions in the peritoneal fibrosis[J]. Journal of Molecular Imaging, 2016, 39(4): 437-442. doi: 10.3969/j.issn.1674-4500.2016.04.28
Citation: Lingling LIU, Wei CHENG, Weidong ZHOU, Jinying PAN, Bo HUANG. Mechanisms and prospects of interventions in the peritoneal fibrosis[J]. Journal of Molecular Imaging, 2016, 39(4): 437-442. doi: 10.3969/j.issn.1674-4500.2016.04.28

腹膜纤维化机制与治疗新进展

doi: 10.3969/j.issn.1674-4500.2016.04.28
详细信息
    作者简介:

    刘玲玲,在读研究生,E-mail: 1176452365@qq.com

Mechanisms and prospects of interventions in the peritoneal fibrosis

  • 摘要: 腹膜透析作为一种有效的肾脏替代治疗,在终末期肾病中运用日渐广泛,甚至成为肾脏替代治疗的首选方案。但长期的腹膜透析会导致腹膜功能下降、腹膜结构改变,最终演变成腹膜纤维化,甚至包裹性腹膜硬化症,使超滤失败,严重时使患者退出腹膜透析。目前国内外研究主要包括:上皮细胞一间充质转化、腹膜透析液的生物不相容性、血管紧张素一醛固酮系统、氧化应激、腹膜炎症、全身微炎症状态、基因调控、生长及转化因子等,针对上述发病机制,提出了相应的治疗方法。

     

  • [1] Taranu T, Florea L, Paduraru D, et al. Morphological changes of the peritoneal membrane in patients with long-term dialysis[J]. Romanian Journal of Morphology and Embryology, 2014, 55(3): 927-32. http://www.ncbi.nlm.nih.gov/pubmed/25329122
    [2] Kinashi H, Ito Y, Mizuno M, et al. TGF-beta 1 Promotes Lymphangiogenesis during Peritoneal Fibrosis[J]. Journal of the American Society of Nephrology, 2013, 24(10): 1627-42. doi: 10.1681/ASN.2012030226
    [3] Kawanishi K, Honda K, Tsukada M, et al. Neutral solution low in glucose degradation products is associated with less peritoneal fibrosis and vascular sclerosis in patients receiving peritoneal dialysis[J]. Perit Dial Int, 2013, 33(3): 242-51. doi: 10.3747/pdi.2011.00270
    [4] Ullian ME, Luttrell LM, Lee MH, et al. Stimulation of cyclooxygenase 2 expression in rat peritoneal mesothelial cells[J]. Nephron Exp Nephrol, 2014, 25(8): 14. https://www.ncbi.nlm.nih.gov/pubmed/25531215
    [5] Onishi A, Akimoto T, Urabe M, et al. Attenuation of methylglyoxalinduced peritoneal fibrosis: immunomodulation by interleukin-10 [J]. Laboratory Investigation, 2015, 95(12): 1353-62. doi: 10.1038/labinvest.2015.110
    [6] Yucel SK, Arikan H, Tugtepe H, et al. Cysteinyl1 receptor antagonist montelukast, does not prevent peritoneal membrane damage in experimental chronic peritoneal dialysis model in rats[J]. Kidney Blood Press Res, 2014, 39(6): 648-57. doi: 10.1159/000368477
    [7] Liu KY, Yorozuya T, Adachi N, et al. Suppression of peritoneal thickening by histamine in a mouse model of peritoneal scraping [J]. Clin Exp Nephrol, 2015, 19(4): 562-6. doi: 10.1007/s10157-014-1027-5
    [8] Rodrigues-Diez R, Aroeira LS, Orejudo MA, et al. IL-17A is a novel player in dialysis-induced peritoneal damage[J]. Kidney Int, 2014, 86(2): 303-15. doi: 10.1038/ki.2014.33
    [9] Liu JY, Zeng LL, Zhao YL, et al. Selenium suppresses Lipopolysaccharide-Induced fibrosis in peritoneal mesothelial cells through inhibition of Epithelial-to-Mesenchymal transition[J]. Biol Trace Elem Res, 2014, 161(2): 202-9. doi: 10.1007/s12011-014-0091-8
    [10] Wakabayashi K, Hamada C, Kanda R, et al. Oral astaxanthin supplementation prevents peritoneal fibrosis in rats[J]. Peritoneal Dialysis International, 2015, 35(5): 506-16. doi: 10.3747/pdi.2013.00317
    [11] Thiery JP, Acloque H, Huang RY, et al. Epithelial-Mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5): 871-90. doi: 10.1016/j.cell.2009.11.007
    [12] Loureiro J, Aguilera A, Selgas R, et al. Blocking TGF-beta1 protects the peritoneal membrane from dialysate-induced damage[J]. J Am Soc Nephrol, 2011, 22(9): 1682-95. doi: 10.1681/ASN.2010111197
    [13] Yang Y, Liu K, Liang Y, et al. Histone acetyltransferase inhibitor C646 reverses epithelial to mesenchymal transition of human peritoneal mesothelial cells via blocking TGF-beta1/Smad3 signaling pathway in vitro[J]. Int J Clin Exp Pathol, 2015, 8(3): 2746-54. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4440089/
    [14] Yang CY, Chau YP, Lee HT, et al. Cannabinoid receptors as therapeutic targets for Dialysis-Induced peritoneal fibrosis[J]. Am J Nephrol, 2013, 37(1): 50-8. doi: 10.1159/000345726
    [15] Lu Y, Gao L, Li L, et al. Hydrogen sulfide alleviates peritoneal fibrosis via attenuating inflammation and TGF-beta1 synthesis[J]. Nephron, 2015, 131(3): 210-9. doi: 10.1159/000441504
    [16] Chaudhary K, Moore H, Tandon A, et al. Nanotechnology and adeno-associated virus-based decorin gene therapy ameliorates peritoneal fibrosis[J]. Am J Physiol Renal Physiol, 2014, 307(7): F777-82. doi: 10.1152/ajprenal.00653.2013
    [17] Kushiyama T, Oda T, Yamada M, et al. Effects of liposomeencapsulated clodronate on chlorhexidine gluconate-induced peritoneal fibrosis in rats[J]. Nephrology Dialysis Transplantation, 2011, 26(10): 3143-54. doi: 10.1093/ndt/gfr068
    [18] Kato H, Mizuno T, Mizuno M, et al. Atrial natriuretic peptide ameliorates peritoneal fibrosis in rat peritonitis model[J]. Nephrology Dialysis Transplantation, 2012, 27(2): 526-36. doi: 10.1093/ndt/gfr302
    [19] Shin HS, Ryu ES, Oh ES, et al. Endoplasmic reticulum stress as a novel target to ameliorate epithelial-to-mesenchymal transition and apoptosis of human peritoneal mesothelial cells[J]. Laboratory Investigation, 2015, 95(10): 1157-73. doi: 10.1038/labinvest.2015.91
    [20] Yung S, Chan T M. Pathophysiological changes to the peritoneal membrane during PD-related peritonitis: the role of mesothelial cells[J]. Mediators Inflamm, 2012, 20(12): 484167. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337720/
    [21] Kitamura S, Horimoto N, Tsuji K, et al. The selection of peritoneal mesothelial cells is important for cell therapy to prevent peritoneal fibrosis[J]. Tissue Eng Part A, 2014, 20(3/4): 529-39. https://www.ncbi.nlm.nih.gov/pubmed/24007428
    [22] Chen KS, Wang CH, Yen TH, et al. Potential role of bone marrowderived cells in the turnover of mesothelium[J]. Ren Fail, 2010, 32 (9): 1081-7. doi: 10.3109/0886022X.2010.509901
    [23] Sekiguchi Y, Hamada C, Ro Y, et al. Differentiation of bone marrow-derived cells into regenerated mesothelial cells in peritoneal remodeling using a peritoneal fibrosis mouse model[J]. Journal of Artificial Organs, 2012, 15(3): 272-82. doi: 10.1007/s10047-012-0648-2
    [24] Shen J, Zheng J, Saxena R, et al. Novel source of human hematopoietic stem cells from peritoneal dialysis effluents[J]. Stem Cell Res, 2015, 15(2): 299-304. doi: 10.1016/j.scr.2015.07.003
    [25] Wang N, Li QG, Zhang L, et al. Mesenchymal stem cells attenuate peritoneal injury through secretion of TSG-6[J]. PLoS One, 2012, 7(8): e43768. doi: 10.1371/journal.pone.0043768
    [26] Wakabayashi K, Hamada C, Kanda R, et al. Adipose-derived mesenchymal stem cells transplantation facilitate experimental peritoneal fibrosis repair by suppressing epithelial-mesenchymal transition[J]. J Nephrol, 2014, 27(5): 507-14. doi: 10.1007/s40620-014-0133-5
    [27] Ang L, Zhuang S. The role of tyrosine kinase receptors in peritoneal fibrosis[J]. Perit Dial Int, 2015, 35(5): 497-505. doi: 10.3747/pdi.2014.00171
    [28] Peng W, Zhou Q, Ao X, et al. Inhibition of Rho-kinase alleviates peritoneal fibrosis and angiogenesis in a rat model of peritoneal dialysis[J]. Ren Fail, 2013, 35(7): 958-66. doi: 10.3109/0886022X.2013.808565
    [29] Iiu J, Bao J, Hao J, et al. HSP70 inhibits high glucose-induced Smad3 activation and attenuates epithelial-to-mesenchymal transition of peritoneal mesothelial cells[J]. Mol Med Rep, 2014, 10 (2): 1089-95. http://www.ncbi.nlm.nih.gov/pubmed/24890460
    [30] Ata Y, Nishino T, Kushibiki T, et al. HSP47 siRNA conjugated with cationized gelatin microspheres suppresses peritoneal fibrosis in mice[J]. Acta Biomater, 2012, 8(7): 2688-96. doi: 10.1016/j.actbio.2012.03.050
    [31] Margetts PJ, Hoff C, Liu L, et al. Transforming growth factor beta-induced peritoneal fibrosis is mouse strain dependent[J]. Nephrol Dial Transplant, 2013, 28(8): 2015-27. doi: 10.1093/ndt/gfs289
    [32] Ang K, Zhang H, Zhou X, et al. miRNA589 regulates epithelialmesenchymal transition in human peritoneal mesothelial cells[J]. J Biomed Biotechnol, 2012, 20, (12): 673096. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479401/
    [33] Li XJ, Sun L, Xiao L, et al. Gene delivery in peritoneal dialysis related peritoneal fibrosis research[J]. Chin Med J (Engl), 2012, 125 (12): 2219-24. https://www.ncbi.nlm.nih.gov/pubmed/22884156
    [34] Lin F, Wu X, Zhang H, et al. A microrna screen to identify regulators of peritoneal fibrosis in a rat model of peritoneal dialysis [J]. BMC Nephrol, 2015, 16(7): 48. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4546227/
    [35] Oshizawa H, Morishita Y, Watanabe M, et al. TGF-beta(1)-siRNA delivery with nanoparticles inhibits peritoneal fibrosis[J]. Gene Ther, 2015, 22(4): 333-40. doi: 10.1038/gt.2014.116
    [36] Amamoto D, Takai S, Hirahara I, et al. Captopril directly inhibits matrix metalloproteinase-2 activity in continuous ambulatory peritoneal dialysis therapy[J]. Clin Chim Acta, 2010, 411(9/10): 762-4. http://www.ncbi.nlm.nih.gov/pubmed/20184869
    [37] Chuinski AF, Baroni G, Pecoits FR, et al. Evaluation of the use of captopril on peritoneal fibrosis induced in rats by the use of glucose solution 4.25%[J]. J Bras Nefrol, 2013, 35(4): 273-8. doi: 10.5935/0101-2800.20130046
    [38] Hang L, Hao JB, Ren LS, et al. The aldosterone receptor antagonist spironolactone prevents peritoneal inflammation and fibrosis[J]. Lab Invest, 2014, 94(8): 839-50. doi: 10.1038/labinvest.2014.69
    [39] Zhang L, Liu J, Liu Y, et al. Fluvastatin inhibits the expression of fibronectin in human peritoneal mesothelial cells induced by high-glucose peritoneal dialysis solution via SGK1 pathway[J]. Clin Exp Nephrol, 2015, 19(3): 336-42. doi: 10.1007/s10157-014-0991-0
    [40] Baroni G, Schuinski AF, Berticelli PT, et al. The influence of simvastatin in induced peritoneal fibrosis in rats by peritoneal dialysis solution with glucosis 4.25%[J]. Acta Cir Bras, 2012, 27 (4): 350-6. doi: 10.1590/S0102-86502012000400012
    [41] Ng YH, Shin HS, Sun CH, et al. Effects of dexamethasone on the TGF-beta1-induced epithelial-to-mesenchymal transition in human peritoneal mesothelial cells[J]. Lab Invest, 2013, 93(2): 194-206. doi: 10.1038/labinvest.2012.166
    [42] Rtunc F, Lang F. Mineralocorticoid and SGK1-sensitive inflammation and tissue fibrosis[J]. Nephron Physiol, 2014, 128(1/ 2): 35-9. https://www.ncbi.nlm.nih.gov/pubmed/25377230
    [43] Lee YC, Hung SY, Liou HH, et al. Vitamin D can ameliorate chlorhexidine gluconate-induced peritoneal fibrosis and functional deteriorationthrough the inhibition of epithelial-to-mesenchymal transition of mesothelial cells[J]. Biomed Res Int, 2015, 1: 595030. http://www.ncbi.nlm.nih.gov/pmc/articles/pmid/26495304/
    [44] Eker K, Inal A, Sayar I, et al. Prevention of intraabdominal adhesions by local and systemic administration of immunosuppressive drugs[J]. Iran Red Crescent Med J, 2013, 15(12): e14148. http://www.ncbi.nlm.nih.gov/pubmed/24693396
    [45] Uddam B, Basaran M, Kocak G, et al. The use of mycophenolate mofetil in experimental encapsulating peritoneal sclerosis[J]. Int Urol Nephrol, 2015, 47(8): 1423-8. doi: 10.1007/s11255-015-1015-z
    [46] Iong C, Liu N, Fang L, et al. Suramin inhibits the development and progression of peritoneal fibrosis[J]. J Pharmacol Exp Ther, 2014, 351(2): 373-82. doi: 10.1124/jpet.114.215228
    [47] I J, Guo ZY, Gao XH, et al. Low molecular weight heparin(LMWH) improves peritoneal function and inhibits peritoneal fibrosis possibly through suppression of HIF-1alpha, VEGF and TGF-beta1 [J]. PLoS One, 2015, 10(2): e118481. http://www.ncbi.nlm.nih.gov/pubmed/25723475
    [48] Rata K, Maruyama S, Kato S, et al. Tissue-type plasminogen activator deficiency attenuates peritoneal fibrosis in mice[J]. Am J Physiol Renal Physiol, 2009, 297(6): F1510-7. doi: 10.1152/ajprenal.90330.2008
    [49] U W. Zhang Y, sigdel K R.the effects of panax notoginseng saponins on the cytokines and peritoneal function in rats with peritoneal fibrosis[J]. Ren Fail, 2015, 37(9): 1507-13. doi: 10.3109/0886022X.2015.1088350
    [50] Tamura M, Nishino T, Obata Y, et al. The kampo medicine Daikenchuto inhibits peritoneal fibrosis in mice[J]. Biol Pharm Bull, 2015, 38(2): 193-200. doi: 10.1248/bpb.b14-00469
    [51] Ou SM, Hu FH, Yang WC, et al. Far-infrared Therapy as a Novel Treatment for Encapsulating Peritoneal Sclerosis[J]. American Journal of Gastroenterology, 2014, 109(12): 1957-9. doi: 10.1038/ajg.2014.352
  • 加载中
计量
  • 文章访问数:  529
  • HTML全文浏览量:  214
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-04
  • 刊出日期:  2016-04-01

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日