留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

乳腺癌胞外膜泡的研究进展

陈二洪 梁建权 宋小宁

陈二洪, 梁建权, 宋小宁. 乳腺癌胞外膜泡的研究进展[J]. 分子影像学杂志, 2016, 39(4): 432-436. doi: 10.3969/j.issn.1674-4500.2016.04.26
引用本文: 陈二洪, 梁建权, 宋小宁. 乳腺癌胞外膜泡的研究进展[J]. 分子影像学杂志, 2016, 39(4): 432-436. doi: 10.3969/j.issn.1674-4500.2016.04.26
Erhong CHEN, Jianquan LIANG, Xiaoning SONG. Research progress of extracellular vesicles in breast cancer[J]. Journal of Molecular Imaging, 2016, 39(4): 432-436. doi: 10.3969/j.issn.1674-4500.2016.04.26
Citation: Erhong CHEN, Jianquan LIANG, Xiaoning SONG. Research progress of extracellular vesicles in breast cancer[J]. Journal of Molecular Imaging, 2016, 39(4): 432-436. doi: 10.3969/j.issn.1674-4500.2016.04.26

乳腺癌胞外膜泡的研究进展

doi: 10.3969/j.issn.1674-4500.2016.04.26
详细信息
    作者简介:

    陈二洪,本科,主治医师,E-mail: ceh52840894@163.com

Research progress of extracellular vesicles in breast cancer

  • 摘要: 肿瘤来源的胞外膜泡内含各种癌症相关的分子,如过表达的癌蛋白、糖蛋白、信使RNA、各种非编码RNA和DNA片段。这些内容物与乳腺癌表型特征传递密切相关,如乳腺癌的耐药性,增强的增殖能力和侵袭性和介导抗肿瘤免疫。因此,肿瘤来源的胞外膜泡作为一种新的肿瘤标记物和治疗靶点得到越来越多的关注。与循环的肿瘤细胞不同的是体液中胞外膜泡异常丰富。相对于与循环系统中的分子标记物,胞外膜泡可以保护泡内分子标记并防止其降解。同时胞外膜泡还携带有特定表型乳腺癌的分子标签。本文总结了关于胞外膜泡作为乳腺癌标记物的研究结果,并提出基于胞外膜泡的标记物在乳腺癌临床治疗中的应用。此外本文还概述了关于乳腺癌的胞外膜泡促癌效应的最新发现并提出阻断胞外膜泡介导的信号通路作为乳腺癌治疗的一种新策略。

     

  • [1] 李霓, 郑荣寿, 张思维, 等.中国城乡女性乳腺癌发病趋势分析和预测[J].中华预防医学杂志, 2012, 46(8): 703-7. http://www.wenkuxiazai.com/doc/6a99c8184431b90d6c85c788.html
    [2] The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours[J].Nature, 2012, 490(18): 61-70. http://www.researchgate.net/profile/Timothy_Triche3/publication/261760530_Comprehensive_molecular_portraits_of_human_breast_tumours/links/5488b3fd0cf2ef344790a379.pdf
    [3] Goldhirsch A, Wood WC, Coates AS, et al. Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St[J]. Ann Oncol, 2011, 22(8): 1736-47. doi: 10.1093/annonc/mdr304
    [4] Cheang MC, Martin M, Nielsen TO, et al. Defining breast cancer intrinsic subtypes by quantitative receptor expression[J]. Oncologist, 2015, 20(5): 474-82. doi: 10.1634/theoncologist.2014-0372
    [5] Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles[J]. Nat Rev Immunol, 2014, 14(3): 195-208. doi: 10.1038/nri3622
    [6] 张敏, 张晨光, 丁卫.外泌体及其在肿瘤诊疗中的意义[J].生理科学进展, 2014, 17(5): 372-8. http://www.cnki.com.cn/Article/CJFDTOTAL-SLKZ201405018.htm
    [7] Wm S, Lach MS. The role of exosomes in tumor progression and metastasis(Review).Oncol Rep[J], 2015, 35(35): 1237-44. http://www.ncbi.nlm.nih.gov/pubmed/26707854
    [8] Rauschenberger L, Staar D, Thom K, et al. Exosomal particles secreted by prostate cancer cells are potent mRNA and protein vehicles for the interference of tumor and tumor environment[J]. Prostate, 2016, 76(4): 409-24. doi: 10.1002/pros.v76.4
    [9] Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles[J]. J Extracell Vesicles, 2013, 12(2): 20389-96. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760635/
    [10] Ronquist G. Prostasomes: their characterisation: implications for human reproduction: prostasomes and human reproduction[J]. Adv Exp Med Biol, 2015, 868(3): 191-209. https://www.ncbi.nlm.nih.gov/pubmed/26178851
    [11] Minciacchi VR, You S, Spinelli C, et al. Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles[J]. Oncotarget, 2015, 6(13): 11327-41. doi: 10.18632/oncotarget
    [12] Ostman S, Taube M, Telemo E. Tolerosome-induced oral tolerance is MHC dependent[J]. Immunology, 2005, 116(4): 464-76. https://www.ncbi.nlm.nih.gov/pubmed/16313360
    [13] Maguire CA, Balaj L, Sivaraman S, et al. Microvesicle-associated AAV vector as a novel gene delivery system[J]. Mol Ther, 2012, 20 (5): 960-71. doi: 10.1038/mt.2011.303
    [14] Andaloussi S, Mäger I, Breakefield XO, et al. Extracellular vesicles: biology and emerging therapeutic opportunities[J]. Nat Rev Drug Discov, 2013, 12(5): 347-57. doi: 10.1038/nrd3978
    [15] Kalra H, Simpson RJ, Ji H, et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation[J]. PLoS Biol, 2012, 10(12): e1001450-62. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3525526/
    [16] Heijnen HF, Schiel AE, Fijnheer R, et al. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules[J]. Blood, 1999, 94(11): 3791-9. http://www.ncbi.nlm.nih.gov/pubmed/10572093
    [17] Wickman G, Julian L, Olson MF. How apoptotic cells aid in the removal of their own cold dead bodies[J]. Cell Death Differ, 2012, 19(5): 735-42. doi: 10.1038/cdd.2012.25
    [18] Weigert A, Johann AM, von Knethen A, et al. Apoptotic cells promote macrophage survival by releasing the antiapoptotic mediator sphingosine-1-phosphate[J]. Blood, 2006, 108(5): 1635-42. doi: 10.1182/blood-2006-04-014852
    [19] Yanez M, Siljander PR, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions[J]. J Extracell Vesicles, 2015, 210(9): 27066-75. http://cn.bing.com/academic/profile?id=2170852633&encoded=0&v=paper_preview&mkt=zh-cn
    [20] Bobrie A, Colombo M, Krumeich S, et al. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation[J]. J Extracell Vesicles, 2012, 114(1):18397-405. https://www.ncbi.nlm.nih.gov/pubmed/24009879
    [21] Xu R, Greening DW, Rai A, et al. Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct[J]. Methods, 2015, 87(5): 11-25. https://www.ncbi.nlm.nih.gov/pubmed/25890246
    [22] Rana S, Claas C, Kretz CC, et al. Activation-induced internalization differs for the tetraspanins CD9 and Tspan8: Impact on tumor cell motility[J]. Int J Biochem Cell Biol, 2011, 43(1): 106-19. doi: 10.1016/j.biocel.2010.10.002
    [23] Rana S, Yue S, Stadel D, et al. Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection[J]. Int J Biochem Cell Biol, 2012, 44(9): 1574-84. doi: 10.1016/j.biocel.2012.06.018
    [24] Hugel B, Martínez MC, Kunzelmann C, et al. Membrane microparticles: two sides of the coin[J]. Physiology (Bethesda), 2005, 20(8): 22-7. https://www.ncbi.nlm.nih.gov/pubmed/15653836
    [25] Berda HY, Robert S, Salers P, et al. Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1α[J]. Proc Natl Acad Sci USA, 2011, 108(51): 20684-9. doi: 10.1073/pnas.1116848108
    [26] Mizutani K, Terazawa R, Kameyama K, et al. Isolation of prostate cancer-related exosomes[J]. Anticancer Res, 2014, 34(7): 3419-23. https://www.ncbi.nlm.nih.gov/pubmed/24982349
    [27] Ji H, Chen M, Greening DW, et al. Deep sequencing of RNA from three different extracellular vesicle (EV) subtypes released from the human LIM1863 colon cancer cell line uncovers distinct miRNA-enrichment signatures[J]. PLoS One, 2014, 9(10): e110314-20. http://www.ncbi.nlm.nih.gov/pubmed/25330373
    [28] Hoen EN, Buermans HP, Waasdorp M, et al. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions[J]. Nucleic Acids Res, 2012, 40(18): 9272-85. doi: 10.1093/nar/gks658
    [29] Huang X, Yuan T, Tschannen M, et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing[J]. BMC Genomics, 2013, 14(9): 319-26. https://www.ncbi.nlm.nih.gov/pubmed/23663360
    [30] Crescitelli R, Lasser C, Szabo TG, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes[J]. J Extracell Vesicles, 2013, (2):20677-82. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823106/
    [31] Jenjaroenpun P, Kremenska Y, Nair VM, et al. Characterization of RNA in exosomes secreted by human breast cancer cell lines using next-generation sequencing[J]. Peer J, 2013, 15(3): e201-12. http://www.ncbi.nlm.nih.gov/pubmed/24255815
    [32] Lunavat TR, Cheng L, Kim DK, et al. Small RNA deep sequencing discriminates subsets of extracellular vesicles released by melanoma cells--Evidence of unique microRNA cargos[J]. RNA Biol, 2015, 12(8): 810-23. doi: 10.1080/15476286.2015.1056975
    [33] Holmgren L, Bergsmedh A, Spetz AL. Horizontal transfer of DNA by the uptake of apoptotic bodies[J]. Vox Sang, 2002, 83(1): 305-6. http://cat.inist.fr/?aModele=afficheN&cpsidt=1832386
    [34] Lázaro IE, Sanz GA, Visakorpi T, et al. Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: apoptotic bodies, microvesicles, and exosomes[J]. Prostate, 2014, 74(14): 1379-90. doi: 10.1002/pros.v74.14
    [35] Thakur BK, Zhang H, Becker A, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection[J]. Cell Res, 2014, 24(6): 766-9. doi: 10.1038/cr.2014.44
    [36] Rabinowits G, Gercel TC, Day JM, et al. Exosomal MicroRNA: A diagnostic marker for lung cancer[J]. Clin Lung Cancer, 2009, 10 (1): 42-6. doi: 10.3816/CLC.2009.n.006
    [37] Logozzi M, De Milito A, Lugini L, et al. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients [J]. PLoS One, 2009, 4(4): e5219-27. http://www.ncbi.nlm.nih.gov/pubmed/19381331
    [38] Galindo HO, Villegas CS, Candanedo F, et al. Elevated concentration of microvesicles isolated from peripheral blood in breast cancer patients[J]. Arch Med Res, 2013, 44(3): 208-14. doi: 10.1016/j.arcmed.2013.03.002
    [39] Cui Y, Zheng L, Jiang M, et al. Circulating microparticles in patients with coronary heart disease and its correlation with interleukin-6 and C-reactive protein[J]. Mol Biol Rep, 2013, 40 (11): 6437-42. doi: 10.1007/s11033-013-2758-1
    [40] Dragovic RA, Southcombe JH, Tannetta DS, et al. Multicolor flow cytometry and nanoparticle tracking analysis of extracellular vesicles in the plasma of normal pregnant and pre-eclamptic women [J]. Biol Reprod, 2013, 89(6): 151-9. doi: 10.1095/biolreprod.113.113266
    [41] Ogata N, Imaizumi M, Nomura S, et al. Increased levels of platelet-derived microparticles in patients with diabetic retinopathy [J]. Diabetes Res Clin Pract, 2005, 68(3): 193-201. doi: 10.1016/j.diabres.2004.10.010
    [42] Khan S, Bennit HF, Turay D, et al. Early diagnostic value of survivin and its alternative splice variants in breast cancer[J]. BMC Cancer, 2014, 14(9): 176-85. http://www.ncbi.nlm.nih.gov/pubmed/24620748
    [43] Nedawi K, Meehan B, Micallef J, et al. Intercellular transfer of the oncogenic receptor EGFRvⅢ by microvesicles derived from tumour cells[J]. Nat Cell Biol, 2008, 10(5): 619-24. doi: 10.1038/ncb1725
    [44] Toth B, Nieuwland R, Liebhardt S, et al. Circulating microparticles in breast cancer patients: a comparative analysis with established biomarkers[J]. Anticancer Res, 2008, 28(2A): 1107-12. http://www.ncbi.nlm.nih.gov/pubmed/18507061
    [45] Menck K, Scharf C, Bleckmann A, et al. Tumor-derived microvesicles mediate human breast cancer invasion through differentially glycosylated EMMPRIN[J]. J Mol Cell Biol, 2015, 7 (2): 143-53. doi: 10.1093/jmcb/mju047
    [46] Eichelser C, Stückrath I, Müller V, et al. Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients[J]. Oncotarget, 2014, 5(20): 9650-63. doi: 10.18632/oncotarget
    [47] Melo SA, Luecke LB, Kahlert C, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic Cancer[J]. Nature, 2015, 523 (7559): 177-82. doi: 10.1038/nature14581
    [48] Makawita S, Dimitromanolakis A, Soosaipillai A, et al. Validation of four candidate pancreatic cancer serological biomarkers that improve the performance of CA19[J]. BMC Cancer, 2013, (2): 404-12. http://www.biomedcentral.com/imedia/1903043760106765_manuscript.pdf
    [49] Amorim M, Fernandes G, Oliveira P, et al. The overexpression of a single oncogene (ERBB2/HER2) alters the proteomic landscape of extracellular vesicles[J]. Proteomics, 2014, 14(12): 1472-9. doi: 10.1002/pmic.v14.12
    [50] O'brien K, Rani S, Corcoran C, et al. Exosomes from triple-negative breast cancer cells can transfer phenotypic traits representing their cells of origin to secondary cells[J]. Eur J Cancer, 2013, 49(8): 1845-59. doi: 10.1016/j.ejca.2013.01.017
    [51] Harris DA, Patel SH, Gucek M, et al. Exosomes released from breast cancer carcinomas stimulate cell movement[J]. PLoS One, 2015, 10(3): e0117495-504. https://www.ncbi.nlm.nih.gov/pubmed/25798887
    [52] Singh R, Pochampally R, Watabe K, et al. Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer[J]. Mol Cancer, 2014, 12(8): 256-63. http://www.ncbi.nlm.nih.gov/pubmed/25428807
    [53] Zhou W, Fong MY, Min Y, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis[J]. Cancer Cell, 2014, 25(4): 501-15. doi: 10.1016/j.ccr.2014.03.007
    [54] Tominaga N, Kosaka N, Ono M, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier[J]. Nat Commun, 2015, 23(6): 6716-24. http://www.ncbi.nlm.nih.gov/pubmed/25828099
    [55] Suetsugu A, Honma K, Saji S, et al. Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models[J]. Adv Drug Deliv Rev, 2013, 65(3): 383-90. doi: 10.1016/j.addr.2012.08.007
    [56] Fong MY, Zhou W, Liu L, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis[J]. Nat Cell Biol, 2015, 17(2): 183-94. doi: 10.1038/ncb3094
    [57] Lv MM, Zhu XY, Chen WX, et al. Exosomes mediate drug resistance transfer in MCF-7 breast Cancer cells and a probable mechanism is delivery of P-glycoprotein[J]. Tumour Biol, 2014, 35 (11): 10773-9. doi: 10.1007/s13277-014-2377-z
    [58] Wei YF, Lai XF, Yu ST, et al. Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells[J]. Breast Cancer Res Treat, 2014, 147(2): 423-31. doi: 10.1007/s10549-014-3037-0
    [59] Yu S, Liu C, Su K, et al. Tumor exosomes inhibit differentiation of bone marrow dendritic cells[J]. J Immunol, 2007, 178(11): 6867-75. doi: 10.4049/jimmunol.178.11.6867
    [60] Menck K, Klemm F, Gross JC, et al. Induction and transport of Wnt 5a during macrophage-induced malignant invasion is mediated by two types of extracellular vesicles[J]. Oncotarget, 2013, 4(11): 2057-66. doi: 10.18632/oncotarget
    [61] Chow A, Zhou W, Liu L, et al. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-kappaB[J]. Sci Rep, 2014, 33(4): 5750-8. http://www.ncbi.nlm.nih.gov/pubmed/25034888
    [62] Peinado H, Alečković M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through Met[J]. Nat Med, 2012, 18(6): 883-91. doi: 10.1038/nm.2753
    [63] Marleau AM, Chen CS, Joyce JA, et al. Exosome removal as a therapeutic adjuvant in cancer[J]. Transl Med, 2012, 35(10): 134-42. http://www.ncbi.nlm.nih.gov/pubmed/22738135
  • 加载中
计量
  • 文章访问数:  478
  • HTML全文浏览量:  223
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-27
  • 刊出日期:  2016-04-01

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日