留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

脑出血后血脑屏障损伤机制的研究进展

王哲 王彦凯 冯伟 张剑伟

王哲, 王彦凯, 冯伟, 张剑伟. 脑出血后血脑屏障损伤机制的研究进展[J]. 分子影像学杂志, 2016, 39(4): 420-424. doi: 10.3969/j.issn.1674-4500.2016.04.23
引用本文: 王哲, 王彦凯, 冯伟, 张剑伟. 脑出血后血脑屏障损伤机制的研究进展[J]. 分子影像学杂志, 2016, 39(4): 420-424. doi: 10.3969/j.issn.1674-4500.2016.04.23
Zhe WANG, Yankai WANG, Wei FENG, Jianwei ZHANG. Research progress on the blood-brain barrier dysfunction after intracerebral hemorrhage[J]. Journal of Molecular Imaging, 2016, 39(4): 420-424. doi: 10.3969/j.issn.1674-4500.2016.04.23
Citation: Zhe WANG, Yankai WANG, Wei FENG, Jianwei ZHANG. Research progress on the blood-brain barrier dysfunction after intracerebral hemorrhage[J]. Journal of Molecular Imaging, 2016, 39(4): 420-424. doi: 10.3969/j.issn.1674-4500.2016.04.23

脑出血后血脑屏障损伤机制的研究进展

doi: 10.3969/j.issn.1674-4500.2016.04.23
基金项目: 

国家重点基础研究发展计划 2014CB541600

详细信息
    作者简介:

    王哲,E-mail: ualis@icloud.com

    通讯作者:

    张剑伟,E-mail: 280154914@qq.com

Research progress on the blood-brain barrier dysfunction after intracerebral hemorrhage

  • 摘要: 多种病因能诱发ICH,如高血压、阿兹海默病、血管畸形和凝血病。ICH后继发性血脑屏障损伤机制研究分别在分子及细胞信号领域上已取得了长足进展,而血液成分中的凝血酶、血红蛋白、铁和继发性炎症反应在ICH诱导的继发性血脑屏障功能紊乱中都发挥了极其重要的作用。所以如何深入理解ICH后继发性血脑屏障功能紊乱的内在机理,对于我们进一步研究脑出血性脑卒中发病机制来说尤为关键。

     

  • [1] Adeoye O, Broderick JP. Advances in the management of intracerebral hemorrhage[J]. Nat Rev Neurol, 2010, 6(11): 593-601. doi: 10.1038/nrneurol.2010.146
    [2] Flaherty ML. Anticoagulant-associated intracerebral hemorrhage[J]. Semin Neurol, 2010, 30(5): 565-72. doi: 10.1055/s-0030-1268866
    [3] Xi G, Strahle J, Hua Y, et al. Progress in translational research on intracerebral hemorrhage: is there an end in sight?[J]. Prog Neurobiol, 2014, 115(5): 45-63. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3961535/
    [4] Keep RF, Hua Y, Xi GH. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets[J]. Lancet Neurol, 2012, 11(8): 720-31. doi: 10.1016/S1474-4422(12)70104-7
    [5] Keep RF, Xi G, Hua Y, et al. The deleterious or beneficial effects of different agents in intracerebral hemorrhage:think big, think small, or is hematoma size important[J]. Stroke, 2005, 36(7): 1594-6. doi: 10.1161/01.STR.0000170701.41507.e1
    [6] Xi GH, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage[J]. Lancet Neurol, 2006, 5(1): 53-63. doi: 10.1016/S1474-4422(05)70283-0
    [7] Yang GY, Betz AL, Chenevert TL, et al. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats[J]. J Neurosurg, 1994, 81 (1): 93-102. doi: 10.3171/jns.1994.81.1.0093
    [8] Wagner KR, Xi G, Hua Y, et al. Ultra-early clot aspiration after lysis with tissue plasminogen activator in a porcine model of intracerebral hemorrhage: edema reduction and blood-brain barrier protection[J]. J Neurosurg, 1999, 90(3): 491-8. doi: 10.3171/jns.1999.90.3.0491
    [9] Rosenberg GA, Estrada E, Kelley RO, et al. Bacterial collagenase disrupts extracellular matrix and opens blood-brain barrier in rat[J]. Neurosci Lett, 1993, 160(1): 117-9. doi: 10.1016/0304-3940(93)90927-D
    [10] Brouwers HB, Greenberg SM. Hematoma expansion following acute intracerebral hemorrhage[J]. Cerebrovasc Dis, 2013, 35(3): 195-201. doi: 10.1159/000346599
    [11] Delgado P, Alvarez Sabin J, Santmarina EA, et al. Plasma S100B level after acute spontaneous intracerebral hemorrhage[J]. Stroke, 2006, 37(11): 2837-9. doi: 10.1161/01.STR.0000245085.58807.ad
    [12] Stanimirovic DB, Friedman A. Pathophysiology of the neurovascular unit:disease cause or consequence[J]. J Cereb Blood Flow Metab, 2012, 32(7): 1207-21. doi: 10.1038/jcbfm.2012.25
    [13] Greenwood J, Heasman SJ, Alvarez JI, et al. Review: leucocyte-endothelial cell crosstalk at the blood-brain barrier: a prerequisite for successful immune cell entry to the brain[J]. Neuropathol Appl Neurobiol, 2011, 37(1): 24-39. doi: 10.1111/nan.2011.37.issue-1
    [14] Ronaldson PT, Davis TP. Blood-brain barrier integrity and glial support: mechanisms that can be targeted for novel therapeutic approaches in stroke[J]. Curr Pharm Des, 2012, 18(25): 3624-44. doi: 10.2174/138161212802002625
    [15] Kate MP, Choi V, Mouridsen K, et al. Blood pressure reduction does not result in perihematoma misery perfusion: a CT perfusion study [J]. J Cereb Blood Flow Metab, 2013, 35(3): 591-3. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887345/
    [16] Liu DZ, Ander BP, Xu H, et al. Blood-brain barrier breakdown and repair by Src after thrombin-induced injury[J]. Ann Neurol, 2010, 67(4): 526-33. doi: 10.1002/ana.21924
    [17] Xi GH, Reiser G, Keep RF. The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective[J]. J Neurochem, 2003, 84(1): 3-9. http://www.ncbi.nlm.nih.gov/pubmed/12485396
    [18] Yan J, Manaenko A, Chen S, et al. Role of SCH79797 in maintaining vascular integrity in rat model of subarachnoid hemorrhage[J]. Stroke, 2013, 44(5): 1410-7. doi: 10.1161/STROKEAHA.113.678474
    [19] Möller T, Weinstein JR, Hanisch UK. Activation of microglial cells by thrombin: past, present, and future[J]. Semin Thromb Hemost, 2006, 32(Suppl 1): 69-76. https://www.ncbi.nlm.nih.gov/pubmed/16673268
    [20] Davalos D, Ryu JK, Merlini M, et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation[J]. Nat Commun, 2012, 3 (7): 1227-9. https://www.ncbi.nlm.nih.gov/pubmed/23187627
    [21] Yang S, Chen Y, Deng X, et al. Hemoglobin-induced nitric oxide synthase overexpression and nitric oxide production contribute to blood-brain barrier disruption in the rat[J]. J Mol Neurosci, 2013, 51 (2): 352-63. doi: 10.1007/s12031-013-9990-y
    [22] Guo F, Hua Y, Wang J, et al. Inhibition of carbonic anhydrase reduces brain injury after intracerebral hemorrhage[J]. Transl Stroke Res, 2012, 3(1): 130-7. doi: 10.1007/s12975-011-0106-0
    [23] Xie Q, Gu Y, Hua Y, et al. Deferoxamine attenuates white matter injury in a Piglet intracerebral hemorrhage model[J]. Stroke, 2014, 45(1): 290-2. doi: 10.1161/STROKEAHA.113.003033
    [24] Loftspring MC, Johnson HL, Feng R, et al. Unconjugated bilirubin contributes to early inflammation and edema after intracerebral hemorrhage[J]. J Cereb Blood Flow Metab, 2011, 31(4): 1133-42. doi: 10.1038/jcbfm.2010.203
    [25] 鲍旭辉, 黄峰平.铁在脑出血后脑水肿形成中的机制研究进展[J].中国神经精神疾病杂志, 2007, 33(8): 507-10. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSJJ200708022.htm
    [26] Fraser PA. The role of free radical Generation in increasing cerebrovascular permeability[J]. Free Radic Biol Med, 2011, 51(5): 967-77. doi: 10.1016/j.freeradbiomed.2011.06.003
    [27] Taylor RA, Sansing LH. Microglial responses after ischemic stroke and intracerebral hemorrhage[J]. Clin Dev Immunol, 2013, 8(11): 746068-70. http://www.ncbi.nlm.nih.gov/pubmed/24223607
    [28] Moxon EI, Schlichter LC. Neutrophil depletion reduces blood-brain barrier breakdown, axon injury, and inflammation after intracerebral hemorrhage[J]. J Neuropathol Exp Neurol, 2011, 70 (3): 218-35. doi: 10.1097/NEN.0b013e31820d94a5
    [29] Wang J, Dore S. Inflammation after intracerebral hemorrhage[J]. J Cereb Blood Flow Metab, 2007, 27(5): 894-908. https://www.ncbi.nlm.nih.gov/pubmed/17033693
    [30] Fang H, Wang PF, Zhou Y, et al. Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury[J]. J Neuroinflammation, 2013, 10(8): 27-9. http://www.ncbi.nlm.nih.gov/pubmed/23414417
    [31] Hammond MD, Taylor RA, Mullen MT, et al. CCR2 + Ly6C(hi) inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage[J]. J Neurosci, 2014, 34(11): 3901-9. doi: 10.1523/JNEUROSCI.4070-13.2014
    [32] Xue M, Del Bigio MR. Intracerebral injection of autologous whole blood in rats: time course of inflammation and cell death[J]. Neurosci Lett, 2000, 283(3): 230-2. doi: 10.1016/S0304-3940(00)00971-X
    [33] Peeling J, Yan HJ, Corbett D, et al. Effect of FK-506 on inflammation and behavioral outcome following intracerebral hemorrhage in rat[J]. Exp Neurol, 2001, 167(2): 341-7. doi: 10.1006/exnr.2000.7564
    [34] Rolland WB, Lekic T, Krafft PR, et al. Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage[J]. Exp Neurol, 2013, 241(9): 45-55. http://www.ncbi.nlm.nih.gov/pubmed/23261767
    [35] Engelhardt B, Ransohoff RM. Capture, crawl, cross: the T cell code to breach the blood-brain barriers[J]. Trends Immunol, 2012, 33 (12): 579-89. doi: 10.1016/j.it.2012.07.004
    [36] Ma Q, Manaenko A, Khatibi NH, et al. Vascular adhesion protein-1 inhibition provides antiinflammatory protection after an intracerebral hemorrhagic stroke in mice[J]. J Cereb Blood Flow Metab, 2011, 31(3): 881-93. doi: 10.1038/jcbfm.2010.167
    [37] Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury[J]. Stroke, 2011, 42(6): 1781-6. doi: 10.1161/STROKEAHA.110.596718
    [38] Rosell A, Vilalta A, Garcia-Berrocoso TA, et al. Brain perihematoma genomic profile following spontaneous human intracerebral hemorrhage[J]. PLoS One, 2011, 6(2): e16750-54. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032742/
    [39] Hua Y, Wu J, Keep RF, et al. Tumor necrosis factor-alpha increases in the brain after intracerebral hemorrhage and thrombin stimulation [J]. Neurosurgery, 2006, 58(3): 542-50. doi: 10.1227/01.NEU.0000197333.55473.AD
    [40] King MD, Alleyne CH, Dhandapani KM. TNF-alpha receptor antagonist, R-7050, improves neurological outcomes following intracerebral hemorrhage in mice[J]. Neurosci Lett, 2013, 542(10): 92-6. https://www.ncbi.nlm.nih.gov/pubmed/23499961
    [41] Yao Y, Tsirka SE. The CCL2-CCR2 system affects the progression and clearance of intracerebral hemorrhage[J]. Glia, 2012, 60(6): 908-18. doi: 10.1002/glia.v60.6
    [42] Rosenberg GA, Mun BS, Wesley M, et al. Collagenase-induced intracerebral hemorrhage in rats[J]. Stroke, 1990, 21(5): 801-7. doi: 10.1161/01.STR.21.5.801
    [43] Xue M, Yong VW. Matrix metalloproteinases in intracerebral hemorrhage[J]. Neurol Res, 2008, 30(8): 775-82. doi: 10.1179/174313208X341102
    [44] Florczak RM, Grond GC, Montaner J, et al. Matrix metalloproteinases in human spontaneous intracerebral hemorrhage: an update[J]. Cerebrovasc Dis, 2012, 34(4): 249-62. doi: 10.1159/000341686
    [45] Hartz AM, Bauer B, Soldner EL, et al. Amyloid-β contributes to blood-brain barrier leakage in transgenic human amyloid precursor protein mice and in humans with cerebral amyloid angiopathy[J]. Stroke, 2012, 43(2): 514-23. doi: 10.1161/STROKEAHA.111.627562
    [46] Liu J, Jin X, Liu KJ, et al. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage[J]. J Neurosci, 2012, 32(9): 3044-57. doi: 10.1523/JNEUROSCI.6409-11.2012
    [47] Li N, Liu YF, Ma L, et al. Association of molecular markers with perihematomal edema and clinical outcome in intracerebral hemorrhage[J]. Stroke, 2013, 44(2, S): 658-63. http://www.ncbi.nlm.nih.gov/pubmed/23391772
    [48] Wells JE, Biernaskie J, Szymanska A, et al. -12 expression has a negative impact on sensorimotor function following intracerebral haemorrhage in mice[J]. Eur J Neurosci, 2005, 21(1): 187-96. doi: 10.1111/ejn.2005.21.issue-1
    [49] Tang J, Liu J, Zhou C, et al. Mmp-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice[J]. J Cereb Blood Flow Metab, 2004, 24(10): 1133-45. https://www.ncbi.nlm.nih.gov/pubmed/15529013
  • 加载中
计量
  • 文章访问数:  540
  • HTML全文浏览量:  533
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-01
  • 刊出日期:  2016-04-01

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日