留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

细胞原纤毛与骨相关疾病的研究进展

杨建波 李飞龙 胡宁 汪长东

杨建波, 李飞龙, 胡宁, 汪长东. 细胞原纤毛与骨相关疾病的研究进展[J]. 分子影像学杂志, 2015, 38(1): 8-12. doi: 10.3969/j.issn.1674-4500.2015.01.03
引用本文: 杨建波, 李飞龙, 胡宁, 汪长东. 细胞原纤毛与骨相关疾病的研究进展[J]. 分子影像学杂志, 2015, 38(1): 8-12. doi: 10.3969/j.issn.1674-4500.2015.01.03

细胞原纤毛与骨相关疾病的研究进展

doi: 10.3969/j.issn.1674-4500.2015.01.03
基金项目: 

重庆市自然科学基金 cstc2014jcyjA0024

教育部博士点基金 20125503120015

详细信息
    作者简介:

    杨建波,主治医师,E-mail: 715754506@qq.com

    通讯作者:

    汪长东,E-mail: cdwhust@163.com

  • 摘要: 纤毛广泛存在于体内的细胞表面,其中“9+0”型纤毛又被称为原纤毛。纤毛在机体发育和调节过程中必不可少,与许多疾病的发病有关,尤其是骨方面。本文就纤毛和原纤毛的结构、调控、作用,及原纤毛在骨发育、骨相关细胞中作用和原纤毛相关骨疾病进行综述。

     

  • [1] Fisch C, Dupuis-Williams P. Ultrastructure of cilia and flagella -back to the future[J]. Biol Cell, 2011, 103(6): 249-70. doi: 10.1042/BC20100139
    [2] Hildebrandt F, Benzing T, Katsanis N. Ciliopathies[J]. N Engl J Med, 2011, 364(16): 1533-43. doi: 10.1056/NEJMra1010172
    [3] Hoey DA, Downs ME, Jacobs CR. The mechanics of the primary cilium: An intricate structure with complex function [J]. J Biomech, 2012, 45(1): 17-26. doi: 10.1016/j.jbiomech.2011.08.008
    [4] Ezratty E, Stokes N, Chai S, et al. A role for the primary cilium in notch signaling and epidermal differentiation during skin development [J]. Cell, 2011, 22(7): 1129-41. https://www.ncbi.nlm.nih.gov/pubmed/21703454
    [5] Keady BT, Le YZ, Pazour GJ. IFT20 is required for opsin trafficking and photoreceptor outer segment development[J]. Mol Biol Cell, 2011, 22(7): 921-30. doi: 10.1091/mbc.E10-09-0792
    [6] Wallingford JB, Mitchell B. Strange as it May seem: the many links between Wnt signaling, planar cell polarity, and cilia[J]. Genes Dev, 2011, 25(3): 201-13. doi: 10.1101/gad.2008011
    [7] Luo MN, Cao MQ, Kan YA, et al. The phosphorylation state of an Aurora-Like kinase marks the length of growing flagella in chlamydomonas [J]. Curr Biol, 2011, 21(7): 586-91. doi: 10.1016/j.cub.2011.02.046
    [8] Pan JM, Naumann-Busch B, Wang L, et al. Protein phosphorylation is a key event of flagellar disassembly revealed by analysis of flagellar phosphoproteins during flagellar shortening in chlamydomonas [J]. J Proteome Res, 2011, 10(8): 3830-9. doi: 10.1021/pr200428n
    [9] Oh EC, Katsanis N. Cilia in vertebrate development and disease [J]. Development, 2012, 139(3): 443-8. doi: 10.1242/dev.050054
    [10] Basten SG, Giles RH. Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis [J]. Cilia, 2013, 2(1): 6. doi: 10.1186/2046-2530-2-6
    [11] Choksi SP, Lauter G, Swoboda P, et al. Switching on cilia: transcriptional networks regulating ciliogenesis[J]. Development, 2014, 141(7): 1427-41. doi: 10.1242/dev.074666
    [12] Briscoe J, Thérond PP. the mechanisms of hedgehog signalling and its roles in development and disease[J]. Nat Rev Mol Cell Biol, 2013, 14(7): 416-29. https://www.ncbi.nlm.nih.gov/pubmed/23719536
    [13] Wallingford JB, Mitchell B. Strange as it May seem: the many links between Wnt signaling, planar cell polarity, and cilia[J]. Genes Dev, 2011, 25(3): 201-13. doi: 10.1101/gad.2008011
    [14] Fry AM, Leaper MJ, Bayliss R. The primary cilium Guardian of organ development and homeostasis[J]. Organogenesis, 2014, 10 (1): 62-8. doi: 10.4161/org.28910
    [15] Haycraft CJ, Banizs B, Aydin-Son Y, et al. Gli2 and Gli3 localize to cilia and require the intra-flagellar transport protein Polaris for processing and function [J]. PLoS Genet, 2005, 1(4): 480-8. http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.0010053
    [16] Liu AM, Wang BL, Niswander LA. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors [J]. Development, 2005, 132(13): 3103-11. doi: 10.1242/dev.01894
    [17] Mcglashan SR, Haycraft CJ, Jensen CG, et al. Articular cartilage and growth plate defects are associated with chondrocyte cytoskeletal abnormalities in Tg737(orpk) mice lacking the primary cilia protein Polaris [J]. Matrix Biol, 2007, 26(4): 234-46. doi: 10.1016/j.matbio.2006.12.003
    [18] Song B, Haycraft CJ, Seo HS, et al. Development of the post-natal growth plate requires intraflagellar transport proteins[J]. Dev Biol, 2007, 305(1): 202-16. doi: 10.1016/j.ydbio.2007.02.003
    [19] Anderson CT, Castillo AB, Brugmann S, et al. Primary cilia:cellular sensorsfor the skeleton[J]. Anat Rec (Hoboken), 2008, 291(9):1074-8. doi: 10.1002/ar.v291:9
    [20] Malone AM, Anderson CT, Tummala P, et al. Primary cilia mediate mechanosensing in bone cellsby a calcium-independent pathway [J]. Proc Natl Acad Sci U S A, 2007, 104: 13325-30. doi: 10.1073/pnas.0700636104
    [21] Hoey DA, Kelly DJ, Jacobs CR. A role for the primary cilium in paracrine signaling between mechanically stimulated osteocytes and mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2011, 412(1): 182-7. doi: 10.1016/j.bbrc.2011.07.072
    [22] Malone AM, Anderson CT, Tummala P, et al. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism [J]. Proc Natl Acad Sci U S A, 2007, 104(33): 13325-30. doi: 10.1073/pnas.0700636104
    [23] Qiu N, Xiao ZS, Cao L, et al. Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia[J]. J Cell Sci, 2012, 125(8): 1945-57. doi: 10.1242/jcs.095893
    [24] Xiao Z, Dallas M, Qiu N, et al. et alConditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice[J]. FASEB J, 2011, 25(7): 2418-32. doi: 10.1096/fj.10-180299
    [25] Qiu N, Cao L, David V, et al. Kif3a deficiency reverses the skeletal abnormalities in Pkd1 deficient mice by restoring the balance between osteogenesis and adipogenesis [J]. PLoS One, 2010, 5(12): e15240. doi: 10.1371/journal.pone.0015240
    [26] Delaine-Smith RM, Sittichokechaiwut A, Reilly GC. Primary cilia respond to fluid shear stress and mediate flow-induced Calcium deposition in osteoblasts [J]. FASEB J, 2014, 28(1): 430-9. doi: 10.1096/fj.13-231894
    [27] Mcglashan SR, Knight MM, Chowdhury TT, et al. Mechanical loading modulates chondrocyte primary cilia incidence and length [J]. Cell Biol Int, 2010, 34(5): 441-6. doi: 10.1042/CBI20090094
    [28] Besschetnova TY, Kolpakova-Hart E, Guan YA, et al. Identification of signaling pathways regulating primary cilium length and Flow-Mediated adaptation [J]. Curr Biol, 2010, 20(2): 182-7. doi: 10.1016/j.cub.2009.11.072
    [29] Thompson CL. Chapple JP2, knight MM3.primary cilia disassembly down-regulates mechanosensitive hedgehog signalling:a feedback mechanism controlling ADAMTS-5 expression in chondrocytes[J]. Osteoarthritis Cartilage, 2014, 22(3): 490-8. doi: 10.1016/j.joca.2013.12.016
    [30] Wann AK, Thompson CL, Chapple JP, et al. Interleukin-1β sequesters hypoxia inducible factor2α to the primary cilium[J]. Cilia, 2013, 2(1): 17. doi: 10.1186/2046-2530-2-17
    [31] Wang C, Yuan X, Yang S. IFT80 is essential for chondrocyte differentiation by regulatinghedgehog and Wnt signaling pathways [J]. Exp Cell Res, 2013, 319(5): 623-32. doi: 10.1016/j.yexcr.2012.12.028
    [32] Cavalcanti DP, Huber C, Sang KH, et al. Mutation in IFT80 in afetus with the phenotype of Verma-Naumoff provides molecular evidence for Jeune-Verma-Naumoff dysplasia spectrum[J]. J Med Genet, 2011, 48: 88-92. doi: 10.1136/jmg.2009.069468
    [33] Koelling S, Miosge N. Sex differences of chondrogenicprogenitor cells in late stages of osteoarthritis[J]. Arthritis Rheum, 2010, 62 (4): 1077-87. doi: 10.1002/art.27311
    [34] Tummala, P, Arnsdorf, et al. The role of primary cilia in mesenchymalstem cell differentiation:a pivotalswitch in guiding lineage commitment [J]. Cell Mol Bioeng, 2010, 3(3): 207-12. doi: 10.1007/s12195-010-0127-x
    [35] Hoey D, Tormey S, Ramcharan S. O'brien FJ, jacobs CR. primary Cilia-Mediated mechanotransduction in HumanMesenchymal[J]. Stem cells, 2012, 30(11): 2561-70. doi: 10.1002/stem.v30.11
    [36] Bredrup C, Saunier S, Oud MM, et al. Ciliopathies with Skeletal Anomalies and Renal Insufficiency due to Mutations in the IFT-A Gene WDR19 [J]. Am J Hum Genet, 2011, 89(5): 634-43. doi: 10.1016/j.ajhg.2011.10.001
    [37] Walczak-Sztulpa J, Eggenschwiler J, Osborn D, et al. Cranioectodermal dysplasia, sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene[J]. Am J Hum Genet, 2010, 86(6): 949-56. doi: 10.1016/j.ajhg.2010.04.012
    [38] Hui CC, Angers S. Gli proteins in development and disease[J]. Annu Rev Cell Dev Biol, 2011, 27: 513-37. doi: 10.1146/annurev-cellbio-092910-154048
    [39] Schmidts M, Vodopiutz J, Christou-Savina SA, et al. Mutations in the gene encoding IFT dynein complex component WDR34 cause jeune asphyxiating thoracic dystrophy[J]. Am J Hum Genet, 2013, 93(5): 932-44. doi: 10.1016/j.ajhg.2013.10.003
    [40] Dagoneau N, Goulet M, Genevieve D, et al. DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short Rib-Polydactyly syndrome, type III [J]. Am J Hum Genet, 2009, 84(5): 706-11. doi: 10.1016/j.ajhg.2009.04.016
    [41] Halbritter J, Bizet AA, Schmidts M, et al. Defects in the IFT-B component IFT172 cause jeune and Mainzer-Saldino syndromes in humans [J]. Am J Hum Genet, 2013, 93(5): 915-25. doi: 10.1016/j.ajhg.2013.09.012
    [42] Schmidts M, Frank V, Eisenberger T, et al. Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney disease [J]. Hum Mutat, 2013, 34(5): 714-24. doi: 10.1002/humu.22294
    [43] Nakatomi M, Hovorakova M, Gritli-Linde A, et al. Evc regulates a symmetrical response to shh signaling in molar development[J]. J Dent Res, 2013, 92(3): 222-8. doi: 10.1177/0022034512471826
    [44] Mill P, Lockhart PJ, Fitzpatrick EA, et al. Human and mouse mutations in WDR35 cause Short-Rib polydactyly syndromes due to abnormal ciliogenesis [J]. Am J Hum Genet, 2011, 88(4): 508-15. doi: 10.1016/j.ajhg.2011.03.015
    [45] Merrill AE, Merriman B, Farrington-Rock CA, et al. Ciliary abnormalities due to defects in the retrograde transport protein DYNC2H1 in Short-Rib polydactyly syndrome[J]. Am J Hum Genet, 2009, 84(4): 542-9. doi: 10.1016/j.ajhg.2009.03.015
    [46] Thiel C, Kessler K, Giessl A, et al. NEK1 mutations cause Short-Rib polydactyly syndrome type majewski[J]. Am J Hum Genet, 2011, 88(1): 106-14. doi: 10.1016/j.ajhg.2010.12.004
    [47] Wann A, Knight MM. Primary cilia elongation in response to interleukin-1 mediates the inflammatory response[J]. Life Sci, 2012, 69(17): 2967-77.
    [48] Chang CF, Ramaswamy G, Serra R. Depletion of primary cilia in articular chondrocytes results inreduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms of earlyosteoarthritis Osteoarthritis and cartilage/OARS [J]. Osteoarthritis Res.Soc, 2012, 20: 152-61. doi: 10.1016/j.joca.2011.11.009
    [49] Hoey D, Tormey S, Ramcharan S. O'brien FJ, jacobs CR.primary cilia-mediated mechanotransduction in human mesenchymal stem cells [J]. Stem Cells, 2012, 30(11): 2561-70. doi: 10.1002/stem.v30.11
    [50] Temiyasathit S, Tang WJ, Leucht P, et al. Mechanosensing by the primary cilium: deletion of Kif3A reduces bone formation due to loading [J]. PLoS One, 2012, 7(3): e33368. doi: 10.1371/journal.pone.0033368
  • 加载中
计量
  • 文章访问数:  561
  • HTML全文浏览量:  180
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-21
  • 刊出日期:  2015-05-15

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日