Application and research progress of near-infrared in modern medicine
-
摘要: 近红外光对活体组织具有更好的穿透深度和生物相容性,最大限度地减少了组织中照射的散射和衰减,近年来已用于体内成像、3D图像可视化、光热疗法、药物释放和体内光遗传学等多个方面,在生物医学领域有着非常广阔的前景。目前近红外在临床医学中的应用愈发广泛,包括与多种分子成像方式结合,使用纳米探针,发挥光声成像作用;开发不同性能的光热剂,通过光能和热能的转化,实现近红外光疗法;结合3D打印这一新兴技术,个性化定制支架或植入物,利用近红外光的时空可调性,使得诊断与治疗同时进行,实现精准化医疗。Abstract: Near-infrared has better penetration depth and biocompatibility for living tissues, which minimizes the scattering and attenuation of irradiation in tissues. In recent years, it has been used in many aspects such as in vivo imaging, 3D image visualization, photothermal therapy, drug release and in vivo optogenetics. Near-infrared is now increasingly used in clinical medicine, combining with various molecular imaging modalities and using nano-probes to play a photoacoustic imaging role; developing photothermal agents with different properties to achieve near-infrared light therapy through the conversion of light and heat energy; combining with 3D printing, an emerging technology, to personalize stents or implants, using the spatio-temporal tunability of near-infrared light to enable simultaneous diagnosis and treatment, and achieving precision medicine.
-
Key words:
- near-infrared /
- modern medicine /
- application /
- research progress
-
[1] Karimi M, Zangabad PS, Baghaee-Ravari S, et al. Smart nanostructures for cargo delivery: uncaging and activating by light[J]. J Am Chem Soc, 2017, 139(13): 4584-610. doi: 10.1021/jacs.6b08313 [2] 李慧, 朱丽君, 古丽妮尕尔·阿里木, 等. 硫化铅量子点辅助近红外二区荧光成像技术在活体应用中的研究进展[J]. 中国医学物理学杂志, 2023, 40(1): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YXWZ202301008.htm [3] Lee JH, Park G, Hong GH, et al. Design considerations for targeted optical contrast agents[J]. Quant Imaging Med Surg, 2012, 2(4): 266-73. [4] Choi HS, Gibbs SL, Lee JH, et al. Targeted zwitterionic near-infrared fluorophores for improved optical imaging[J]. Nat Biotechnol, 2013, 31(2): 148-53. doi: 10.1038/nbt.2468 [5] Gálisová A, Herynek V, Swider E, et al. A trimodal imaging platform for tracking viable transplanted pancreatic islets in vivo: F-19 MR, fluorescence, and bioluminescence imaging[J]. Mol Imaging Biol, 2019, 21(3): 454-64. doi: 10.1007/s11307-018-1270-3 [6] Lindsay KE, Bhosle SM, Zurla C, et al. Visualization of early events in mRNA vaccine delivery in non-human Primates via PET-CT and near-infrared imaging[J]. Nat Biomed Eng, 2019, 3(5): 371-80. doi: 10.1038/s41551-019-0378-3 [7] Katagiri W, Lee JH, Tétrault MA, et al. Real-time imaging of vaccine biodistribution using zwitterionic NIR nanoparticles[J]. Adv Healthcare Mater, 2019, 8(15): 1900035. doi: 10.1002/adhm.201900035 [8] Hu ZH, Fang C, Li B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-Ⅰ/Ⅱ windows[J]. Nat Biomed Eng, 2020, 4(3): 259-71. [9] Luo SL, Zhang EL, Su YP, et al. A review of NIR dyes in cancer targeting and imaging[J]. Biomaterials, 2011, 32(29): 7127-38. doi: 10.1016/j.biomaterials.2011.06.024 [10] Xin J, Zhang XH, Liang JM, et al. In vivo gastric cancer targeting and imaging using novel symmetric cyanine dye-conjugated GX1 peptide probes[J]. Bioconjugate Chem, 2013, 24(7): 1134-43. doi: 10.1021/bc3006539 [11] Saccomano M, Dullin C, Alves F, et al. Preclinical evaluation of near-infrared (NIR) fluorescently labeled cetuximab as a potential tool for fluorescence-guided surgery[J]. Int J Cancer, 2016, 139(10): 2277-89. doi: 10.1002/ijc.30277 [12] Yakavets I, Francois A, Guiot M, et al. NIR imaging of the integrin-rich head and neck squamous cell carcinoma using ternary copper indium selenide/zinc sulfide-based quantum dots[J]. Cancers, 2020, 12(12): 3727. doi: 10.3390/cancers12123727 [13] Sun L, Ouyang J, Zeng F, et al. An AIEgen-based oral-administration nanosystem for detection and therapy of ulcerative colitis via 3D-MSOT/NIR-Ⅱ fluorescent imaging and inhibiting NLRP3 inflammasome[J]. Biomaterials, 2022, 283: 121468. doi: 10.1016/j.biomaterials.2022.121468 [14] Hsu KF, Su SP, Lu HF, et al. TADF-based NIR-Ⅱ semiconducting polymer dots for in vivo 3D bone imaging[J]. Chem Sci, 2022, 13(34): 10074-81. doi: 10.1039/D2SC03271F [15] Shi YB, Tang MN, Zhang SD, et al. First nerve-related immunoprobe for guidance of renal denervation through colocalization of NIR-Ⅱ and photoacoustic bioimaging (adv. healthcare mater. 21/2022)[J]. Adv Healthc Mater, 2022, 11(21): 2270131. doi: 10.1002/adhm.202270131 [16] Su SP, Lin SL, Chan YH, et al. Development of stereo NIR-Ⅱ fluorescence imaging system for 3D tumor vasculature in small animals[J]. Biosensors, 2022, 12(2): 85. doi: 10.3390/bios12020085 [17] Wang SW, Liu J, Goh CC, et al. NIR-Ⅱ-excited intravital two-photon microscopy distinguishes deep cerebral and tumor vasculatures with an ultrabright NIR-Ⅰ AIE luminogen[J]. Adv Mater, 2019, 31(44): 1904447. doi: 10.1002/adma.201904447 [18] Chen JJ, Chen LQ, Zeng F, et al. Aminopeptidase N activatable nanoprobe for tracking lymphatic metastasis and guiding tumor resection surgery via optoacoustic/NIR-Ⅱ fluorescence dual-mode imaging[J]. Anal Chem, 2022, 94(23): 8449-57. doi: 10.1021/acs.analchem.2c01241 [19] Chang BS, Li DF, Ren Y, et al. A phosphorescent probe for in vivo imaging in the second near-infrared window[J]. Nat Biomed Eng, 2022, 6(5): 629-39. [20] Xu C, Jiang YY, Han YH, et al. A polymer multicellular nanoengager for synergistic NIR-Ⅱ photothermal immunotherapy[J]. Adv Mater, 2021, 33(14): e2008061. doi: 10.1002/adma.202008061 [21] Xu WH, Wang D, Tang BZ. NIR-Ⅱ AIEgens: a win-win integration towards bioapplications[J]. Angew Chem Int Ed Engl, 2021, 60(14): 7476-87. doi: 10.1002/anie.202005899 [22] Mi C, Guan M, Zhang X, et al. High spatial and temporal resolution NIR-Ⅱb gastrointestinal imaging in mice[J]. Nano Lett, 2022, 22(7): 2793-800. doi: 10.1021/acs.nanolett.1c04909 [23] Guo B, Chen JQ, Chen NB, et al. High-resolution 3D NIR-Ⅱ photoacoustic imaging of cerebral and tumor vasculatures using conjugated polymer nanoparticles as contrast agent[J]. Adv Mater, 2019, 31(25): 1808355. doi: 10.1002/adma.201808355 [24] Zhu Q, Xiao SY, Hua ZJ, et al. Near infrared (NIR) light therapy of eye diseases: a review[J]. Int J Med Sci, 2021, 18(1): 109-19. doi: 10.7150/ijms.52980 [25] Chung H, Dai TH, Sharma SK, et al. The nuts and bolts of low-level laser (light) therapy[J]. Ann Biomed Eng, 2012, 40(2): 516-33. doi: 10.1007/s10439-011-0454-7 [26] Jung HS, Verwilst P, Sharma A, et al. Organic molecule-based photothermal agents: an expanding photothermal therapy universe[J]. Chem Soc Rev, 2018, 47(7): 2280-97. doi: 10.1039/C7CS00522A [27] Zhi DF, Yang T, O'Hagan J, et al. Photothermal therapy[J]. J Control Release, 2020, 325: 52-71. doi: 10.1016/j.jconrel.2020.06.032 [28] Chen Y, Chen SY, Yu HL, et al. D-a type NIR-Ⅱ organic molecules: strategies for the enhancement fluorescence brightness and applications in NIR-Ⅱ fluorescence imaging-navigated photothermal therapy (adv. healthcare mater. 21/2022)[J]. Adv Healthc Mater, 2022, 11(21): 2270127. doi: 10.1002/adhm.202270127 [29] Xu C, Pu KY. Second near-infrared photothermal materials for combinational nanotheranostics[J]. Chem Soc Rev, 2021, 50(2): 1111-37. doi: 10.1039/D0CS00664E [30] Wu S, Li Y, Zhang R, et al. Persistent luminescence-polypyrrole nanocomposite for dual-modal imaging and photothermal therapy of mammary cancer[J]. Talanta, 2021, 221: 121435. doi: 10.1016/j.talanta.2020.121435 [31] Zhang X, Tang J, Li C, et al. A targeting black phosphorus nanoparticle based immune cells nano-regulator for photodynamic/photothermal and photo-immunotherapy[J]. Bioact Mater, 2021, 6(2): 472-89. doi: 10.1016/j.bioactmat.2020.08.024 [32] He C, Dong CH, Yu LD, et al. Ultrathin 2D inorganic ancient pigment decorated 3D-printing scaffold enables photonic hyperthermia of osteosarcoma in NIR-Ⅱ biowindow and concurrently augments bone regeneration[J]. Adv Sci, 2021, 8(19): 2101739. doi: 10.1002/advs.202101739 [33] Ding F, Gao X, Huang X, et al. Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy[J]. Biomaterials, 2020, 245: 119976. doi: 10.1016/j.biomaterials.2020.119976 [34] Liu YH, Zhang YW, Wang JZ, et al. Doxorubicin-loaded walnut-shaped polydopamine nanomotor for photothermal-chemotherapy of cancer[J]. Bioconjugate Chem, 2022, 33(4): 726-35. doi: 10.1021/acs.bioconjchem.2c00100 [35] He PP, Du XX, Cheng Y, et al. Thermal-responsive MXene-DNA hydrogel for near-infrared light triggered localized photothermal-chemo synergistic cancer therapy[J]. Small, 2022, 18(40): 2200263. doi: 10.1002/smll.202200263 [36] Dong CL, Yang C, Younis MR, et al. Bioactive NIR-Ⅱ light-responsive shape memory composite based on cuprorivaite nanosheets for endometrial regeneration[J]. Adv Sci, 2022, 9(12): 2102220. doi: 10.1002/advs.202102220 [37] Wang XC, Yu YR, Yang CY, et al. Dynamically responsive scaffolds from microfluidic 3D printing for skin flap regeneration[J]. Adv Sci (Weinh), 2022, 9(22): e2201155. doi: 10.1002/advs.202201155 [38] Zhang Y, Li C, Zhang W, et al. 3D-printed NIR-responsive shape memory polyurethane/magnesium scaffolds with tight-contact for robust bone regeneration[J]. Bioact Mater, 2022, 16: 218-31. doi: 10.1016/j.bioactmat.2021.12.032 [39] Zhang K, Zhuang YL, Li JW, et al. Poly(acrylic acid)-modified MoS2 nanoparticle-based transdermal delivery of atenolol[J]. Int J Nanomed, 2020, 15: 5517-26. doi: 10.2147/IJN.S257906 [40] Wei X, Liu C, Wang Z, et al. 3D printed core-shell hydrogel fiber scaffolds with NIR-triggered drug release for localized therapy of breast cancer[J]. Int J Pharm, 2020, 580: 119219. doi: 10.1016/j.ijpharm.2020.119219 [41] Kim D, Wu Y, Oh YK. On-demand delivery of protein drug from 3D-printed implants[J]. J Control Release, 2022, 349: 133-42. doi: 10.1016/j.jconrel.2022.06.047 [42] Chen YW, Zhang JM, Liu X, et al. Noninvasive in vivo 3D bioprinting[J]. Sci Adv, 2020, 6(23): eaba7406. doi: 10.1126/sciadv.aba7406
点击查看大图
计量
- 文章访问数: 600
- HTML全文浏览量: 1318
- PDF下载量: 129
- 被引次数: 0