留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

酰胺质子转移成像在脑胶质瘤诊断及分子分型预测中的研究进展

王钧豪 苏一飞 成睿 王春红 吉宏明

王钧豪, 苏一飞, 成睿, 王春红, 吉宏明. 酰胺质子转移成像在脑胶质瘤诊断及分子分型预测中的研究进展[J]. 分子影像学杂志, 2023, 46(4): 765-768. doi: 10.12122/j.issn.1674-4500.2023.04.33
引用本文: 王钧豪, 苏一飞, 成睿, 王春红, 吉宏明. 酰胺质子转移成像在脑胶质瘤诊断及分子分型预测中的研究进展[J]. 分子影像学杂志, 2023, 46(4): 765-768. doi: 10.12122/j.issn.1674-4500.2023.04.33
WANG Junhao, SU Yifei, CHENG Rui, WANG Chunhong, JI Hongming. Research progress of amido-proton transfer imaging in diagnosis and molecular typing prediction of brain glioma[J]. Journal of Molecular Imaging, 2023, 46(4): 765-768. doi: 10.12122/j.issn.1674-4500.2023.04.33
Citation: WANG Junhao, SU Yifei, CHENG Rui, WANG Chunhong, JI Hongming. Research progress of amido-proton transfer imaging in diagnosis and molecular typing prediction of brain glioma[J]. Journal of Molecular Imaging, 2023, 46(4): 765-768. doi: 10.12122/j.issn.1674-4500.2023.04.33

酰胺质子转移成像在脑胶质瘤诊断及分子分型预测中的研究进展

doi: 10.12122/j.issn.1674-4500.2023.04.33
基金项目: 

山西省自然科学基金 20210302124380

山西省自然科学基金 20210302124386

详细信息
    作者简介:

    王钧豪,在读硕士研究生,E-mail: wangjh920123@163.com

    通讯作者:

    吉宏明,主任医师,E-mail: hongmingj@sina.com

Research progress of amido-proton transfer imaging in diagnosis and molecular typing prediction of brain glioma

  • 摘要: 胶质瘤原发于中枢神经系统,恶性程度高,预后差,目前诊断除手术病理外多依据磁共振检查。传统磁共振检查以图像形式呈递信息,以肿瘤强化范围及瘤周水肿为主要描述对象,基于人眼识别及临床经验对肿瘤性质进行判断。在不强化胶质瘤及治疗相关改变的鉴别方面受很大程度的限制。酰胺质子转移磁共振成像是一种新兴的体内分子自体显像技术, 将传统解剖成像延伸到活体代谢成像、pH成像和其他亚型,拓展了磁共振分子成像的新领域,提供了疾病诊断、治疗甚至预防的新手段。目前该技术尚处研究中,现就酰胺质子转移成像的基本原理、常用定量方法、在胶质瘤中的应用以及该技术的不足及展望等相关研究进展进行综述。

     

  • 图  1  CEST-MRI原理图

    Figure  1.  CEST-MRI schematic diagram.

  • [1] Rominiyi O, Vanderlinden A, Clenton SJ, et al. Tumour treating fields therapy for glioblastoma: current advances and future directions[J]. Br J Cancer, 2021, 124(4): 697-709. doi: 10.1038/s41416-020-01136-5
    [2] Mamoune KE, Barantin L, Adriaensen H, et al. Application of chemical exchange saturation transfer (CEST) in neuroimaging[J]. J Chem Neuroanat, 2021, 114: 101944. doi: 10.1016/j.jchemneu.2021.101944
    [3] Dou WQ, Lin CY E, Ding HY, et al. Chemical exchange saturation transfer magnetic resonance imaging and its main and potential applications in pre-clinical and clinical studies[J]. Quant Imaging Med Surg, 2019, 9(10): 1747-66. doi: 10.21037/qims.2019.10.03
    [4] Zhou JY, Wilson DA, Sun PZ, et al. Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments[J]. Magn Reson Med, 2004, 51(5): 945-52. doi: 10.1002/mrm.20048
    [5] Chen LQ, Howison CM, Jeffery JJ, et al. Evaluations of extracellular pH within in vivo tumors using acidoCEST MRI[J]. Magn Reson Med, 2014, 72(5): 1408-17. doi: 10.1002/mrm.25053
    [6] Lindeman LR, Randtke EA, High RA, et al. A comparison of exogenous and endogenous CEST MRI methods for evaluating in vivo pH[J]. Magn Reson Med, 2018, 79(5): 2766-72. doi: 10.1002/mrm.26924
    [7] Li TZ, Cárdenas-Rodríguez J, Trakru PN, et al. A machine learning approach that measures pH using acidoCEST MRI of iopamidol[J]. NMR Biomed, 2023: e4986. doi: 10.1002/nbm.4986
    [8] Zhou JY, Payen JF, Wilson DA, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nat Med, 2003, 9(8): 1085-90. doi: 10.1038/nm907
    [9] Zhou J, Lal B, Wilson DA, et al. Amide proton transfer (APT) contrast for imaging of brain tumors[J]. Magn Reson Med, 2003, 50(6): 1120-6. doi: 10.1002/mrm.10651
    [10] Zhou JY, Blakeley JO, Hua J, et al. Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging[J]. Magn Reson Med, 2008, 60(4): 842-9. doi: 10.1002/mrm.21712
    [11] Wu Y, Chen YS, Zhao YY, et al. Direct radiofrequency saturation corrected amide proton transfer tumor MRI at 3T[J]. Magn Reson Med, 2019, 81(4): 2710-9. doi: 10.1002/mrm.27562
    [12] Togao O, Yoshiura T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades[J]. Neuro-oncology, 2014, 16(3): 441-8. doi: 10.1093/neuonc/not158
    [13] Koike H, Morikawa M, Ishimaru H, et al. Amide proton transfer-chemical exchange saturation transfer imaging of intracranial brain tumors and tumor-like lesions: our experience and a review[J]. Diagnostics, 2023, 13(5): 914. doi: 10.3390/diagnostics13050914
    [14] Jiang S, Eberhart CG, Zhang Y, et al. Amide proton transfer-weighted magnetic resonance image-guided stereotactic biopsy in patients with newly diagnosed gliomas[J]. Eur J Cancer, 2017, 83: 9-18. doi: 10.1016/j.ejca.2017.06.009
    [15] Yang YG, Qu X, Huang YH, et al. Preliminary application of 3.0 T magnetic resonance chemical exchange saturation transfer imaging in brain metastasis of lung cancer[J]. BMC medical imaging, 2020, 20(1): 4. doi: 10.1186/s12880-019-0400-y
    [16] Sartoretti E, Sartoretti T, Wyss M, et al. Amide proton transfer weighted (APTw) imaging based radiomics allows for the differentiation of gliomas from metastases[J]. Sci Rep, 2021, 11: 5506. doi: 10.1038/s41598-021-85168-8
    [17] Weigand-Whittier J, Sedykh M, Herz K, et al. Accelerated and quantitative three-dimensional molecular MRI using a generative adversarial network[J]. Magn Reson Med, 2023, 89(5): 1901-14. doi: 10.1002/mrm.29574
    [18] Jiang SS, Yu H, Wang XL, et al. Molecular MRI differentiation between primary central nervous system lymphomas and high-grade gliomas using endogenous protein-based amide proton transfer MR imaging at 3 Tesla[J]. Eur Radiol, 2016, 26(1): 64-71. doi: 10.1007/s00330-015-3805-1
    [19] 国家卫生健康委员会医政医管局, 中国抗癌协会脑胶质瘤专业委员会, 中国医师协会脑胶质瘤专业委员会. 脑胶质瘤诊疗指南(2022版)[J]. 中华神经外科杂志, 2022, 38(8): 757-7. doi: 10.3760/cma.j.cn112050-20220510-00239
    [20] Singh G, Manjila S, Sakla N, et al. Radiomics and radiogenomics in gliomas: a contemporary update[J]. Br J Cancer, 2021, 125(5): 641-57. doi: 10.1038/s41416-021-01387-w
    [21] Liu YQ, Chai RC, Wang YZ, et al. Amino acid metabolism-related gene expression-based risk signature can better predict overall survival for glioma[J]. Cancer Sci, 2019, 110(1): 321-33. doi: 10.1111/cas.13878
    [22] Jiang SS, Zou TY, Eberhart CG, et al. Predicting IDH mutation status in grade Ⅱ gliomas using amide proton transfer-weighted (APTw) MRI[J]. Magn Reson Med, 2017, 78(3): 1100-9. doi: 10.1002/mrm.26820
    [23] Jiang SS, Rui QH, Wang Y, et al. Discriminating MGMT promoter methylation status in patients with glioblastoma employing amide proton transfer-weighted MRI metrics[J]. Eur Radiol, 2018, 28(5): 2115-23. doi: 10.1007/s00330-017-5182-4
    [24] Su C, Liu C, Zhao L, et al. Amide proton transfer imaging allows detection of glioma grades and tumor proliferation: comparison with ki-67 expression and proton MR spectroscopy imaging[J]. Am J Neuroradiol, 2017, 38(9): 1702-9. doi: 10.3174/ajnr.A5301
    [25] Yuan YF, Yu Y, Guo Y, et al. Noninvasive delineation of glioma infiltration with combined 7T chemical exchange saturation transfer imaging and MR spectroscopy: a diagnostic accuracy study[J]. Metabolites, 2022, 12(10): 901. doi: 10.3390/metabo12100901
    [26] Ellingson BM, Chung C, Pope WB, et al. Pseudoprogression, radionecrosis, inflammation or true tumor progression? challenges associated with glioblastoma response assessment in an evolving therapeutic landscape[J]. J Neurooncol, 2017, 134(3): 495-504. doi: 10.1007/s11060-017-2375-2
    [27] Sharma M, Juthani RG, Vogelbaum MA. Updated response assessment criteria for high-grade glioma: beyond the MacDonald criteria[J]. Chin Clin Oncol, 2017, 6(4): 37. doi: 10.21037/cco.2017.06.26
    [28] 蒋山姗. 脑胶质瘤酰胺质子转移磁共振成像与组织病理学及基因组学相关研究[D]. 广州: 南方医科大学, 2016.
    [29] Ma B, Blakeley JO, Hong XH, et al. Applying amide proton transfer-weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas[J]. J Magn Reson Imaging, 2016, 44(2): 456-62. doi: 10.1002/jmri.25159
    [30] Jalalifar SA, Soliman H, Sahgal A, et al. Predicting the outcome of radiotherapy in brain metastasis by integrating the clinical and MRI-based deep learning features[J]. Med Phys, 2022, 49(11): 7167-78. doi: 10.1002/mp.15814
    [31] Park JE, Kim HS, Park KJ, et al. Pre-and posttreatment glioma: comparison of amide proton transfer imaging with MR spectroscopy for biomarkers of tumor proliferation[J]. Radiology, 2016, 278(2): 514-23. doi: 10.1148/radiol.2015142979
    [32] Yao JW, Tan CHP, Schlossman J, et al. pH-weighted amine chemical exchange saturation transfer echoplanar imaging (CEST-EPI) as a potential early biomarker for bevacizumab failure in recurrent glioblastoma[J]. J Neuro Oncol, 2019, 142(3): 587-95. doi: 10.1007/s11060-019-03132-z
  • 加载中
图(1)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  43
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-23
  • 网络出版日期:  2023-07-18
  • 刊出日期:  2023-07-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日