留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

基于磁共振影像组学列线图预测中晚期鼻咽癌放化疗疗效

王雪莲 赵灿灿 周牧野 王欣 张玉文 王志远 陈刘成

王雪莲, 赵灿灿, 周牧野, 王欣, 张玉文, 王志远, 陈刘成. 基于磁共振影像组学列线图预测中晚期鼻咽癌放化疗疗效[J]. 分子影像学杂志, 2023, 46(4): 654-660. doi: 10.12122/j.issn.1674-4500.2023.04.14
引用本文: 王雪莲, 赵灿灿, 周牧野, 王欣, 张玉文, 王志远, 陈刘成. 基于磁共振影像组学列线图预测中晚期鼻咽癌放化疗疗效[J]. 分子影像学杂志, 2023, 46(4): 654-660. doi: 10.12122/j.issn.1674-4500.2023.04.14
WANG Xuelian, ZHAO Cancan, ZHOU Muye, WANG Xin, ZHANG Yuwen, WANG Zhiyuan, CHEN Liucheng. Predicting the efficacy of chemoradiotherapy for advanced nasopharyngeal carcinoma based on MRI radiomic nomogram[J]. Journal of Molecular Imaging, 2023, 46(4): 654-660. doi: 10.12122/j.issn.1674-4500.2023.04.14
Citation: WANG Xuelian, ZHAO Cancan, ZHOU Muye, WANG Xin, ZHANG Yuwen, WANG Zhiyuan, CHEN Liucheng. Predicting the efficacy of chemoradiotherapy for advanced nasopharyngeal carcinoma based on MRI radiomic nomogram[J]. Journal of Molecular Imaging, 2023, 46(4): 654-660. doi: 10.12122/j.issn.1674-4500.2023.04.14

基于磁共振影像组学列线图预测中晚期鼻咽癌放化疗疗效

doi: 10.12122/j.issn.1674-4500.2023.04.14
基金项目: 

蚌埠医学院自然科学重点项目 2020byzd128

详细信息
    作者简介:

    王雪莲,住院医师,在读硕士研究生,E-mail: 18154198478@163.com

    通讯作者:

    陈刘成,副主任医师,副教授,硕士生导师,E-mail: chenliu1385521@163.com

Predicting the efficacy of chemoradiotherapy for advanced nasopharyngeal carcinoma based on MRI radiomic nomogram

  • 摘要:   目的  探讨基于多模态磁共振的影像组学特征结合临床信息构建的列线图在中晚期鼻咽癌临床放化疗疗效中的预测价值。  方法  回顾性分析160例经病理证实为鼻咽癌的初诊患者的影像及临床资料。按照7:3的比例将患者分为训练组(n=112)与验证组(n=48)。在训练组提取T2加权脂肪抑制序列、T1加权增强序列和弥散加权成像序列图像的影像组学特征,经过最小绝对收缩和选择算子数据降维,筛选出最有效的特征构建影像组学预测模型。纳入相关的临床信息,利用Logistic逻辑回归,筛选最有价值的临床信息并构建临床信息模型;联合临床信息模型与组学特征模型构建联合模型,并构建列线图。通过ROC曲线及曲线下面积来评估各模型的诊断效能,通过决策曲线分析和校正曲线评估列线图的临床应用价值。  结果  联合2项临床信息和9项影像组学特征构建的临床-影像组学模型在训练组和验证组的曲线下面积分别为0.852(95% CI : 0.765~0.940)、0.736(95% CI : 0.574~0.898),显示出良好的预测效能。  结论  基于多模态磁共振的影像组学列线图在预测中晚期鼻咽期临床放化疗疗效中具有可行性,具有较好的临床应用价值。

     

  • 图  1  基于肿瘤最大层面手动勾画ROI示意图

    Figure  1.  Manually outline the ROI schematic based on the maximum tumor level. A-C: Results of manual lesion segmentation on T2WI-STIR, T1WI+C and DWI images respectively.

    图  2  LASSO回归模型筛选出9个影像组学特征

    Figure  2.  Nine radiomics features screened by LASSO regression model.

    图  3  3个模型在训练组(A)及验证组(B)中的ROC曲线

    Figure  3.  ROC curves of three models in the training group (A) and the validation group (B).

    图  4  预测鼻咽癌放化疗疗效的列线图

    Figure  4.  Nomogramn for predicting the efficacy of radiotherapy and chemotherapy for nasopharyngeal carcinoma. T stage: 1 represents T3-T4, 0 represents T1-T2; Clinical stage: 1 represents stage Ⅳ, 0 represents stage Ⅱ~Ⅲ.

    图  5  训练组(A)及验证组(B)列线图的校正曲线

    Figure  5.  Correction curves of nomogramn for training group (A) and validation group (B).

    图  6  训练组(A)和验证组(B)的DCA曲线

    Figure  6.  DCA curves for training group (A) and validation group (B).

    表  1  患者临床信息比较

    Table  1.   Comparison of patient clinical information [n(%)]

    Index Training group Validation group
    Ineffectiveness (n=31) Effectiveness (n=81) P Ineffectiveness (n=13) Effectiveness (n=35) P
    Age (years, Mean±SD) 52.806±12.257 51.790±12.160 0.694 52.692±14.419 51.400±14.522 0.785
    Tumor length (cm, Mean±SD) 3.142±0.731 3.198±0.546 0.663 3.162±0.617 3.223±0.509 0.728
    Gender [n(%)] 0.639 0.348
      Female 9 (29.0) 20 (24.7) 2 (15.4) 10 (28.6)
      Male 22 (71.0) 61 (75.3) 11 (84.6) 25 (71.4)
    Bloody nasal discharge [n(%)] 0.176 0.330
      No 23 (74.2) 49 (60.5) 8 (61.5) 16 (45.7)
      Yes 8 (25.8) 32 (39.5) 5 (38.5) 19 (54.3)
    LN metastasis [n(%)] 0.863 0.203
      No 3 (9.7) 7 (8.6) 0 (0.0) 4 (11.4)
      Yes 28 (90.3) 74 (91.4) 13 (100.0) 31 (88.6)
    T stage [n(%)] 0.024 0.330
      T1-T2 11 (35.5) 48 (59.3) 5 (38.5) 19 (54.3)
      T3-T4 20 (64.5) 33 (40.7) 8 (61.5) 16 (45.7)
    Clinical stage [n(%)] 0.016 0.302
      Ⅱ~Ⅲ 18 (58.1) 65 (80.2) 9 (69.2) 29 (82.9)
      Ⅳ 13 (41.9) 16 (19.8) 4 (30.8) 6 (17.1)
    下载: 导出CSV

    表  2  临床信息单因素、多因素Logistic回归分析

    Table  2.   Univariate and multivariate Logistic regression analysis of clinical information

    Parameters Univariate Logistic regression Multivariate Logistic regression
    OR 95% CI P OR 95% CI P
    Age 0.99 0.96-1.03 0.691 - - -
    Tumor length 1.17 0.58-2.35 0.66 - - -
    Gender 1.25 0.49-3.15 0.639 - - -
    Bloody nasal discharge 1.88 0.75-4.71 0.179 - - -
    LN metastasis 1.13 0.27-4.69 0.864 - - -
    T stage 0.38 0.16-0.89 0.026 0.36 0.15-0.86 0.025
    Clinical stage 0.34 0.14-0.84 0.019 0.32 0.13-0.82 0.018
    下载: 导出CSV

    表  3  3组模型比较

    Table  3.   Comparison of three models

    Groups AUC(95% CI Specificity Sensitivity Youden index
    Training group
        Clinical model 0.669(0.558-0.780) 0.774 0.457 0.231
        Radiomics model 0.841(0.759-0.923) 0.645 0.901 0.546
        Combined model 0.852(0.765-0.940) 0.649 0.963 0.612
    Validation group
        Clinical model 0.636(0.471-0.802) 0.769 0.486 0.255
        Radiomics model 0.725(0.582-0.869) 0.543 0.923 0.466
        Combined model 0.736(0.574-0.898) 0.692 0.771 0.463
    下载: 导出CSV
  • [1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-49. doi: 10.3322/caac.21660
    [2] Chen YP, Chan ATC, Le QT, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64-80. doi: 10.1016/S0140-6736(19)30956-0
    [3] Lee AWM, Ng WT, Chan JYW, et al. Management of locally recurrent nasopharyngeal carcinoma[J]. Cancer Treat Rev, 2019, 79: 101890. doi: 10.1016/j.ctrv.2019.101890
    [4] 张力. 鼻咽癌的综合治疗进展[J]. 肿瘤防治研究, 2019, 46(8): 667-71. doi: 10.3971/j.issn.1000-8578.2019.19.0636
    [5] Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-6. doi: 10.1016/j.ejca.2011.11.036
    [6] Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-77. doi: 10.1148/radiol.2015151169
    [7] Zhong LZ, Dong D, Fang XL, et al. A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: a multicentre study[J]. EBioMedicine, 2021, 70: 103522. doi: 10.1016/j.ebiom.2021.103522
    [8] Paprad T, Lertbutsayanukul C, Jittapiromsak N. Value of diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging for prediction of treatment outcomes in nasopharyngeal carcinoma[J]. J Comput Assist Tomogr, 2022, 46(4): 664-72. doi: 10.1097/RCT.0000000000001304
    [9] 芮银芳, 周楠, 杨阳, 等. 扩散加权成像和临床分期在鼻咽癌预后评估中的价值[J]. 中国耳鼻咽喉颅底外科杂志, 2022, 28(5): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZEBY202205009.htm
    [10] Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)[J]. Eur J Cancer, 2009, 45(2): 228-47. doi: 10.1016/j.ejca.2008.10.026
    [11] Tang LL, Chen YP, Chen CB, et al. The Chinese Society of Clinical Oncology (CSCO) clinical guidelines for the diagnosis and treatment of nasopharyngeal carcinoma[J]. Cancer Commun (Lond), 2021, 41(11): 1195-227. doi: 10.1002/cac2.12218
    [12] 高玉青, 王小雷, 徐鹤, 等. 基于增强CT影像组学术前预测胃癌淋巴结转移[J]. 中国CT和MRI杂志, 2022, 20(11): 140-2. https://www.cnki.com.cn/Article/CJFDTOTAL-CTMR202211051.htm
    [13] Lee SH, Park H, Ko ES. Radiomics in breast imaging from techniques to clinical applications: a review[J]. Korean J Radiol, 2020, 21(7): 779. doi: 10.3348/kjr.2019.0855
    [14] Wang YF, Yang YL, Sun JW, et al. Development and validation of the predictive model for esophageal squamous cell carcinoma differentiation degree[J]. Front Genet, 2020, 11: 595638. doi: 10.3389/fgene.2020.595638
    [15] 吴佩琪, 杨雅俪, 周妍璐, 等. 乳腺良恶性病变鉴别的MRI影像组学预测模型构建: 基于随机森林、支持向量机、逻辑回归分类器[J]. 分子影像学杂志, 2021, 44(5): 764-70. doi: 10.12122/j.issn.1674-4500.2021.05.07
    [16] Li HH, Gao L, Ma H, et al. Radiomics-based features for prediction of histological subtypes in central lung cancer[J]. Front Oncol, 2021, 11: 658887. doi: 10.3389/fonc.2021.658887
    [17] Yang FC, Zhang JY, Zhou L, et al. CT-based radiomics signatures can predict the tumor response of non-small cell lung cancer patients treated with first-line chemotherapy and targeted therapy[J]. Eur Radiol, 2022, 32(3): 1538-47. doi: 10.1007/s00330-021-08277-y
    [18] Song M, Li S, Wang H, et al. MRI radiomics independent of clinical baseline characteristics and neoadjuvant treatment modalities predict response to neoadjuvant therapy in rectal cancer[J]. Br J Cancer, 2022, 127(2): 249-57. doi: 10.1038/s41416-022-01786-7
    [19] Yu TT, Lam SK, To LH, et al. Pretreatment prediction of adaptive radiation therapy eligibility using MRI-based radiomics for advanced nasopharyngeal carcinoma patients[J]. Front Oncol, 2019, 9: 1050. doi: 10.3389/fonc.2019.01050
    [20] Zhao LN, Gong J, Xi YB, et al. MRI-based radiomics nomogram may predict the response to induction chemotherapy and survival in locally advanced nasopharyngeal carcinoma[J]. Eur Radiol, 2020, 30(1): 537-46. doi: 10.1007/s00330-019-06211-x
    [21] Piao YF, Jiang CE, Wang L, et al. The usefulness of pretreatment MR-based radiomics on early response of neoadjuvant chemotherapy in patients with locally advanced nasopharyngeal carcinoma[J]. Oncol Res, 2020, 28(6): 605-13. doi: 10.3727/096504020X16022401878096
    [22] Hu CM, Zheng DC, Cao XS, et al. Application value of magnetic resonance radiomics and clinical nomograms in evaluating the sensitivity of neoadjuvant chemotherapy for nasopharyngeal carcinoma[J]. Front Oncol, 2021, 11: 740776. doi: 10.3389/fonc.2021.740776
    [23] 吴刚刚, 边学飞, 周琪, 等. 鼻咽癌患者临床分期的相关因素分析[J]. 温州医科大学学报, 2022, 52(7): 577-81. https://www.cnki.com.cn/Article/CJFDTOTAL-WZYX202207011.htm
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  145
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-06
  • 网络出版日期:  2023-07-18
  • 刊出日期:  2023-07-20

目录

    /

    返回文章
    返回